Penn ESE370 Fall2014 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 22: October 22, 2014 Pass Transistor Logic.

Slides:



Advertisements
Similar presentations
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 29, 2010 MOS Transistors.
Advertisements

Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 24: October 27, 2014 Distributed RC Wire.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 24: November 4, 2011 Synchronous Circuits.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 21: October 28, 2011 Distributed RC Delay.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 27: November 5, 2014 Dynamic Logic Midterm.
EGRE 427 Advanced Digital Design Figures from Application-Specific Integrated Circuits, Michael John Sebastian Smith, Addison Wesley, 1997 Chapter 3 ASIC.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 15, 2013 Memory Periphery.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 36: December 7, 2012 Transmission Line.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: September 24, 2014 MOS Transistor.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 16, 2013 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 39: December 6, 2013 Repeaters in Wiring.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 15, 2014 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 16, 2012 Memory Periphery.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 18: October 13, 2014 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 3: September 3, 2014 Gates from Transistors.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 24: November 5, 2010 Memory Overview.
Penn ESE370 Fall Townley & DeHon ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 5, 2011 Layout and.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 35: December 5, 2012 Transmission Lines.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 7: September 22, 2010 Delay and RC Response.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 26: October 31, 2014 Synchronous Circuits.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 32: November 28, 2011 Inductive Noise.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 18: October 14, 2013 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 22: November 1, 2010 Dynamic Logic.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 30: November 19, 2010 Crosstalk.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 8: September 15, 2014 Delay and RC Response.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 33: November 20, 2013 Crosstalk.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 17: October 19, 2011 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 35: November 25, 2013 Inductive Noise.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 3: September 12, 2011 Transistor Introduction.
Day 16: October 6, 2014 Inverter Performance
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 22: October 31, 2011 Pass Transistor Logic.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 19, 2014 MOS Transistor.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 6: September 10, 2014 Restoration.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: September 25, 2013 MOS Transistors.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 7, 2014 Memory Overview.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 6: September 19, 2011 Restoration.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 23: October 24, 2014 Pass Transistor Logic:
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 28: November 8, 2013 Memory Overview.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 19, 2012 Ratioed Logic.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 4: September 14, 2011 Gates from Transistors.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 4: September 12, 2012 Transistor Introduction.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 24: November 5, 2012 Synchronous Circuits.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 20: October 25, 2010 Pass Transistors.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 20, 2013 MOS Transistor.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 5: September 8, 2014 Transistor Introduction.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 8: September 21, 2012 Delay and RC Response.
Day 3: September 10, 2012 Gates from Transistors
Day 22: October 31, 2012 Pass Transistor Logic
Day 20: October 24, 2012 Driving Large Capacitive Loads
Day 15: October 10, 2012 Inverter Performance
Day 15: October 14, 2011 Inverter Performance
Day 22: October 23, 2013 Pass Transistor Logic
Day 22: October 31, 2011 Pass Transistor Logic
Day 20: October 17, 2014 Ratioed Logic
Day 23: November 3, 2010 Driving Large Capacitive Loads
Day 19: October 24, 2011 Ratioed Logic
Day 23: November 2, 2012 Pass Transistor Logic: part 2
Day 17: October 8, 2014 Performance: Gates
Day 24: October 28, 2013 Distributed RC Wire and Elmore Delay
Day 25: November 7, 2011 Registers
Day 20: October 18, 2013 Ratioed Logic
Day 3: September 4, 2013 Gates from Transistors
Day 14: October 8, 2010 Performance
Day 18: October 20, 2010 Ratioed Logic Pass Transistor Logic
Day 17: October 9, 2013 Performance: Gates
Day 15: October 13, 2010 Performance: Gates
Day 8: September 23, 2011 Delay and RC Response
Day 16: October 12, 2012 Performance: Gates
Day 16: October 17, 2011 Performance: Gates
Day 26: November 10, 2010 Memory Periphery
Presentation transcript:

Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 22: October 22, 2014 Pass Transistor Logic

Teaser What does this do? Penn ESE370 Fall DeHon 2

Previously Penn ESE370 Fall DeHon 3

Impact of Capacitance Penn ESE370 Fall DeHon 4

Today Pass Transistor Circuits C diff >0 Penn ESE370 Fall DeHon 5

Pass Transistor Penn ESE370 Fall DeHon 6

Identify Function What function? Penn ESE370 Fall DeHon 7

Area Compare with CMOS circuit? Penn ESE370 Fall DeHon 8

Output What is Vout if A=0, B=0? Penn ESE370 Fall DeHon 9

Output What is Vout if A=1, B=0, notB=1? Penn ESE370 Fall DeHon 10

Output Is this a restoring gate? Penn ESE370 Fall DeHon 11

Output What does output look like (DC transfer)? –(B=1, notB=0, sweep A, notA=CMOS inv(A)) Penn ESE370 Fall DeHon 12

Pass TR transfer (B=1) Penn ESE370 Fall DeHon 13

CMOS Inverter Transfer Penn ESE370 Fall DeHon 14

Reasonable Input to CMOS Inverter? Penn ESE370 Fall DeHon 15

Pass tr xor2 with inv restore Penn ESE370 Fall DeHon 16

Compare CMOS Is this a fair comparison? Penn ESE370 Fall DeHon 17

Required to use? What need to add to make substitutable with CMOS? Penn ESE370 Fall DeHon 18

Restore Output Penn ESE370 Fall DeHon 19

Restore Output Area? (compare to CMOS) Penn ESE370 Fall DeHon 20

Chain Together Penn ESE370 Fall DeHon 21

Analyze Stage Penn ESE370 Fall DeHon 22

Analyze Stage What’s different about this? Penn ESE370 Fall DeHon 23

Delay B=0, C diff =0? Penn ESE370 Fall DeHon 24

Equivalent RC Circuit Penn ESE370 Fall DeHon 25

Circuit Penn ESE370 Fall DeHon 26

Delay B=1, C diff =0? Penn ESE370 Fall DeHon 27

Equivalent RC Circuit Penn ESE370 Fall DeHon 28

Circuit Penn ESE370 Fall DeHon 29

Circuit What’s different about this? Penn ESE370 Fall DeHon 30

C diff >0 Penn ESE370 Fall DeHon 31

Contact/Diffusion Capacitance C j – diffusion depletion C jsw – sidewall capacitance L S – length of diffusion Penn ESE370 Fall DeHon 32 LSLS

Impact of Capacitance Penn ESE370 Fall DeHon 33

Inverter Delay Delay driving another inverter? –Include Cdiff=  Cgate Penn ESE370 Fall DeHon 34 W=1

Delay B=1, C diff =  C g ? Penn ESE370 Fall DeHon 35

Equivalent RC Circuit? Penn ESE370 Fall DeHon 36

Equivalent RC Circuit Penn ESE370 Fall DeHon 37

Bonus (time permit) What does this do? Penn ESE370 Fall DeHon 38 A B More examples in book.

Idea There are other circuit disciplines Can use pass transistors for logic –Sometimes gives area or delay win Penn ESE370 Fall DeHon 39

Admin Project –Hopefully done with baseline –Ron office hours today –Get started on design-space exploration and optimization Penn ESE370 Fall DeHon 40