Presentation is loading. Please wait.

Presentation is loading. Please wait.

Day 20: October 24, 2012 Driving Large Capacitive Loads

Similar presentations


Presentation on theme: "Day 20: October 24, 2012 Driving Large Capacitive Loads"— Presentation transcript:

1 Day 20: October 24, 2012 Driving Large Capacitive Loads
ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 20: October 24, 2012 Driving Large Capacitive Loads Penn ESE370 Fall DeHon

2 Today Back to CMOS today How do we drive a large load?
Stages and buffer sizing Minimum delay Penn ESE370 Fall DeHon

3 Message To drive large loads Scale factor: 3—4 typically
Scale buffers geometrically Exponential scale up in buffer size Scale factor: 3—4 typically One origin of fanout 4 target Drains contribute capacitance, too Can formulate math to optimize Penn ESE370 Fall DeHon

4 (same model we’ve been assuming)
Start Cdiff=0 (same model we’ve been assuming) Penn ESE370 Fall DeHon

5 One Stage How size to minimize delay? Penn ESE370 Fall DeHon

6 One Stage Delay equation? Penn ESE370 Fall DeHon

7 Minimize Differentiate and set to zero. What’s WN?
Penn ESE370 Fall DeHon

8 Solving for size Penn ESE370 Fall DeHon

9 Concrete? What is WN for Cload=4x104? Penn ESE370 Fall DeHon

10 N-stage Penn ESE370 Fall DeHon

11 N-stage Delay Penn ESE370 Fall DeHon

12 Size WNi to minimize delay
How minimize? Penn ESE370 Fall DeHon

13 Size WNi to minimize delay
Take partial derivative wrt WNi Penn ESE370 Fall DeHon

14 Solving for WNi Penn ESE370 Fall DeHon

15 Delay Penn ESE370 Fall DeHon

16 Stage Delay Penn ESE370 Fall DeHon

17 Stage Delay Penn ESE370 Fall DeHon

18 Math Penn ESE370 Fall DeHon

19 Total Delay Penn ESE370 Fall DeHon

20 Total Delay Penn ESE370 Fall DeHon

21 How many stages? How does this trend with N?
Penn ESE370 Fall DeHon

22 Plot Delay vs. N Delay (t units) N Penn ESE370 Fall DeHon

23 Zoom Delay vs. N Penn ESE370 Fall DeHon

24 Minimize Penn ESE370 Fall DeHon

25 Solve Penn ESE370 Fall DeHon

26 Concrete What is optimal N for Cload=4x104C0?
Penn ESE370 Fall DeHon

27 Zoom Delay vs. N Penn ESE370 Fall DeHon

28 Optimum Scale Up What is f? Penn ESE370 Fall DeHon

29 Optimum Scale Up Deep result – take time to digest.
Penn ESE370 Fall DeHon

30 Delay at Optimum Penn ESE370 Fall DeHon

31 Cdiff=gCgate Penn ESE370 Fall DeHon

32 Contact Capacitance n+ contacts are formed by doping = diffusion
Day 11 Contact Capacitance n+ contacts are formed by doping = diffusion Depletion under contact Contact-Body capacitance Depletion around perimeter of contact Also contact-Body capacitance Penn ESE370 Fall DeHon

33 Contact/Diffusion Capacitance
Day 11 Contact/Diffusion Capacitance Cj – diffusion depletion Cjsw – sidewall capacitance LS – length of diffusion LS Penn ESE370 Fall DeHon

34 Capacitance Roundup CGS=CGCS+CO CGD=CGCD+CO CGB=CGCB CSB=Cdiff
Day 11 Capacitance Roundup CGS=CGCS+CO CGD=CGCD+CO CGB=CGCB CSB=Cdiff CDB=Cdiff Penn ESE370 Fall DeHon

35 Impact on Capacitance Penn ESE370 Fall DeHon

36 Contact/Diffusion Capacitance
Cj – diffusion depletion Cjsw – sidewall capacitance LS – length of diffusion LS Penn ESE370 Fall DeHon

37 Diffusion Capacitance
What does this do to t model? Delay of middle stage? Penn ESE370 Fall DeHon

38 Stage Delay Penn ESE370 Fall DeHon

39 Stage Delay Penn ESE370 Fall DeHon

40 N-stage Delay Penn ESE370 Fall DeHon

41 N-stage Delay Penn ESE370 Fall DeHon

42 Impact on Min Wni ? Partial Derivative unchanged
What does this say about f? Penn ESE370 Fall DeHon

43 Stage Delay: f unchanged (fixed N)
Penn ESE370 Fall DeHon

44 Total Delay Penn ESE370 Fall DeHon

45 Impact of Gamma g=1.5 g=1.0 g=0.5 g=0 Penn ESE370 Fall DeHon

46 Impact of Gamma g=1.5 g=1.0 g=0.5 g=0 Penn ESE370 Fall DeHon

47 Minimize Penn ESE370 Fall DeHon

48 Solve Penn ESE370 Fall DeHon

49 Solve Penn ESE370 Fall DeHon

50 Optimum Scale Up Penn ESE370 Fall DeHon

51 Optimal Staging g≠0 Penn ESE370 Fall DeHon

52 F and gamma? f=4 is optimal for what g? f=3 is optimal for what g?
Penn ESE370 Fall DeHon

53 Optimal Fanout Clearer why we use f=4 as our benchmark? Remember HW3.5
Penn ESE370 Fall DeHon

54 Idea To drive large loads Scale factor: 3—4 typically
Scale buffers geometrically Exponential scale up in buffer size Scale factor: 3—4 typically One origin of fanout 4 target Drains contribute capacitance, too Can formulate math to optimize Penn ESE370 Fall DeHon

55 Admin Project: Milestone due tomorrow Jan Rabaey talk tomorrow at 11am
Udit office hours today Jan Rabaey talk tomorrow at 11am One of textbook authors Penn ESE370 Fall DeHon


Download ppt "Day 20: October 24, 2012 Driving Large Capacitive Loads"

Similar presentations


Ads by Google