Presentation is loading. Please wait.

Presentation is loading. Please wait.

Physiological effects of training The respiratory system.

Similar presentations


Presentation on theme: "Physiological effects of training The respiratory system."— Presentation transcript:

1 Physiological effects of training The respiratory system

2 Cast of equine lung

3 (A) Trachea B) Cartilage C) Vocal cord D) Epiglottis 1) Buccal cavity 2) Nasal Cavity (open to pharynx) 3) Inferior maxillary sinus 4) Superior maxillary sinus 5) Frontal sinuses 6) Guttural pouch 7) Pharynx 8) Trachea 9) Bronchus 10) Alveolus 11) Lungs 12) Larynx

4

5

6 http://video.google.co.uk/videosearch?gbv=2 &hl=en&q=horse%20equine%20respiratory%2 0tract&ndsp=20&ie=UTF- 8&sa=N&tab=iv&start=0# http://video.google.co.uk/videosearch?gbv=2 &hl=en&q=horse%20equine%20respiratory%2 0tract&ndsp=20&ie=UTF- 8&sa=N&tab=iv&start=0#

7 Respiratory System revision Primary function – gas exchange. Provides O 2 to tissues & removes CO 2. Resting respiratory rate = 8-16 breaths / minute. During intense exercise this can increase up to 35 x normal rate. Respiratory system is a limiting factor for maximal performance.

8 Anatomy affecting performance Larynx – regulates airflow into trachea. Laryngeal displacement (swallowing the tongue) can affect performance. Whistlers / roarers can not open left vocal chord effectively due to nerve degeneration. Surgical procedures are an option if performance is compromised (hobdays, tiebacks, tubing). http://www.youtube.com/watch?v=_b0AZmm Lgi0&feature=related

9 Locomotory-respiratory coupling In canter & gallop, stride matches breath 1:1. Each phase of the stride corresponds to each phase of respiratory cycle. Piston-pendulum effect. Inspiration – horses raises neck & forelegs,guts move back allowing diaphragm to move back. As scapula moves forward, serratus ventralis pulls ribs up & open. When forelimb lands (deceleration phase), gust move forwards & push on diaphragm, making air leave the lungs.

10 Locomotory respiratory coupling Inhalation – thoracic unloading phase Exhalation – thoracic loading phase

11 A – inhalation B - exhalation

12 The responses of the respiratory system to training During exercise the respiratory rate can increase to 120bpm to cope with oxygen demand. At canter & gallop, the respiratory rate is locked to the stride rate. Training can increase ability to supply & utilise oxygen. Training clears the alveoli of mucous, increasing the functional capacity of the lungs. Known as alveolar recruitment. The capillaries surrounding these alveoli proliferate. Leads to greater surface area for increased gaseous exchange. Chest / diaphragm muscles development aids efficient breathing.

13 Responses to training Training increases maximal oxygen uptake (VO 2max ) due to an increase in cardiac output / efficiency of O 2 extraction from the air breathed. Recovery rate of respiration after exercise improves with training.

14 Increase O2 intake With exercise the respiratory/ventilation rate changes. Can increase to 120 bpm in faster paces with max being 180 bpm. At canter & gallop, the respiratory rate is locked to the stride rate. Exercise increases depth of breathing. Average horse lung holds 4-7 litres of air – exercise can raise this capacity to 10 litres. Rate of diffusion of the alveoli increases due to greater demand for O 2 by the tissues. Maximal rate of O 2 is called VO 2max. Occurs when O 2 upload does not increase any further despite increase workload. When workload is greater than provided by VO 2max horses demand exceeds aerobic capacity & horse has to provide energy anaerobically.

15 Alveolar Recruitment Resting horse does not need to use entire air space or lung capacity. Where no gas exchange occurs its called anatomical dead space. Alveoli that are not perfused with blood are called alveoli dead space. At rest dead space accounts for 70% of the tidal volume & 30% of the alveolar volume. More alveoli are required as work intensity increases. Training stimulates debris collected in alveoli of resting horses to be removed & alveoli are ‘recruited’.

16 Pulmonary Capillarisation Training causes increase in No. of capillaries surrounding alveoli. Results in greater proportion of oxygen breathed in being transported to the muscles. Gaseous exchange Proportion of O2 breathe din being transported to muscles.

17 Muscular Development Diaphragm & skeletal muscles associated with inspiration & exhalation undergo hypertrophy in response to training. This results in increased efficiency of inspiration & expiration.

18 The technique we use to measure respiratory mechanics requires the determination of the intrathoracic pressure and the flow of air in and out the respiratory system. A tube positioned in the esophagus (similar to nasogastric tubes used to administer mineral oil in a horse with colic for example) measures the pressure within the thorax; at the end of tube, a measuring device called pressure transducer is placed. The tube is small and its placement is well tolerated by horses. A device call a "pneumotacograph" placed on a facial mask measures the flow of air. These two signals, allow the calculation of various respiratory parameters such as tidal volume (quantity of air inspired during a breath), minute ventilation (volume of air inhaled per minute), airway resistance (the resistance offered by the respiratory tract preventing the movement of air; horses with COPD have an obstruction of the airway which impairs airflow), airway compliance (measures the elasticity of the lung; also abnormal in horses with COPD), inertance. The calculation of inertance provide information on the elasticity of the lung.

19 Revision - respiratory 1.What is the normal rate of breathing in an average adult horse at rest? 2.How high can the breathing rate go during strenuous exercise? 3.Why does the breathing need to increase during exercise? 4.Describe the relationship between breathing rate and stride in canter & gallop. 5.What is the overall aim of training in relation to the respiratory system? 6.What is alveolar recruitment? 7.How does muscular development with training aid the adaptation of the respiratory system? 8.What is Vo2 max.?


Download ppt "Physiological effects of training The respiratory system."

Similar presentations


Ads by Google