Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.

Slides:



Advertisements
Similar presentations
DRAFT - NOT FOR PUBLICATION 14 July 2004 – ITRS Summer Conference ITRS FEP Challenges Continued scaling will require the introduction of new materials.
Advertisements

by Alexander Glavtchev
6.1 Transistor Operation 6.2 The Junction FET
IEEE Device Research Conference, June , Notre Dame
Metal Oxide Semiconductor Field Effect Transistors
High-K Dielectrics The Future of Silicon Transistors
Lateral Asymmetric Channel (LAC) Transistors
Zhang Xintong 11/26/2014 Process technologies for making FinFETs.
Optimization of Carbon Nanotube Field-Effect Transistors (FETs) Alexandra Ford NSE 203/EE 235 Class Presentation March 5, 2007.
Xlab.me.berkeley.edu Xlab Confidential – Internal Only EE235 Carbon Nanotube FET Volker Sorger.
Design and Implementation of VLSI Systems (EN0160)
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 18: Scaling Theory Prof. Sherief Reda Division of Engineering, Brown University.
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 13: Power Dissipation Prof. Sherief Reda Division of Engineering, Brown.
Lecture 5 – Power Prof. Luke Theogarajan
Introduction to CMOS VLSI Design Nonideal Transistors.
Lecture 7: Power.
INAC The NASA Institute for Nanoelectronics and Computing Purdue University Circuit Modeling of Carbon Nanotubes and Their Performance Estimation in VLSI.
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
Device Physics – Transistor Integrated Circuit
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Advanced Process Integration
Introduction to FinFet
Nanometer InP Electron Devices for VLSI and THz Applications
Limitations of Digital Computation William Trapanese Richard Wong.
Class Presentation for VLSI Course Major Reference is: Circuit Design Issues in Multi-Gate FET CMOS Technologies Christian Pacha, Klaus VonArnim,
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS.
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
Technology Development for InGaAs/InP-channel MOSFETs
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
VLSI INTERCONNECTS IN VLSI DESIGN - PROF. RAKESH K. JHA
11-1 Integrated Microsystems Lab. EE372 VLSI SYSTEM DESIGNE. Yoon Latch-up & Power Consumption Latch-up Problem Latch-up condition  1   2 >1 GND Vdd.
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
Z. Feng MTU EE4800 CMOS Digital IC Design & Analysis 6.1 EE4800 CMOS Digital IC Design & Analysis Lecture 6 Power Zhuo Feng.
III-V MOS: Planar and Fin Technologies 2014 MRS Spring Meeting, April 23, San Francisco. M.J.W. Rodwell, UCSB III-V MOS: S. Lee, C.-Y. Huang, D. Elias,
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
The Fate of Silicon Technology: Silicon Transistors Maria Bucukovska Scott Crawford Everett Comfort.
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
Fatemeh (Samira) Soltani University of Victoria June 11 th
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Guided by: Prof.J.D.PRADHAN Submitted By: K.Anurag Regn no:
RTL Simulator for VChip 1999/11/11 이재곤. RTL Simulator for VChip  현재 상황 Compiled-code 로 변환 중  VBS 의 내장된 obj 파일을 이용하려 하였으나 제 대로 구현되어 있지 않음  Obj 파일 :
Making better transistors: beyond yet another new materials system
Floating-Gate Devices / Circuits
Lower Limits To Specific Contact Resistivity
Alireza Shafaei, Shuang Chen, Yanzhi Wang, and Massoud Pedram
Low Write-Energy STT-MRAMs using FinFET-based Access Transistors
20-NM CMOS DESIGN.
High Transconductance Surface Channel In0. 53Ga0
Chapter 4 Interconnect.
VLSI Design MOSFET Scaling and CMOS Latch Up
INTRODUCTION: MD. SHAFIQUL ISLAM ROLL: REGI:
PHYSICS OF SEMICONDUCTOR DEVICES II
Day 17: October 18, 2010 (Energy) Ratioed Logic
Device Physics – Transistor Integrated Circuit
MOSFET Scaling ECE G201.
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Device Physics – Transistor Integrated Circuit
Beyond Si MOSFETs Part IV.
Beyond Si MOSFETs Part 1.
Presentation transcript:

Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on Energy Efficient Electronic Systems, October 28-29, 2013

High Aspect Ratio Fins for Low-Power Logic InGaAs finFET: 8 nm thick fin 200 nm high InGaAs NFET height>> pitch InGaAs PFET Enables ~4 nm fin bodies→ 8 nm gate length 10:1 more current per unit die area → smaller IC die area complements lithographic scaling Enables high speed, ultra low-power logic, V dd ~300 mV Fin thickness defined by Atomic layer epitaxy → nm thickness control Fin height defined by sidewall growth → 200 nm high fins D. Elias, DRC 2013, June, Notre Dame

Background: III-V MOS V. Chobpattana et al (Stemmer group), APPLIED PHYSICS LETTERS 102, (2013) L g = 60 nm

FinFETs by Atomic Layer Epitaxy: Why ? Electrostatics: body must be thinner than ~L g /2 → less than 4 nm thick body for 8 nm L g Problem: threshold becomes sensitive to body thickness Problem: low mobility unless surfaces are very smooth Implication: At sub-8-nm gate length, need : atomically-smooth interfaces atomically-precise control of channel thickness side benefit: high drive current→ low-voltage, low-power logic

ALE-Defined finFET: Process Flow Fin template: formed by {110}-facet-selective etch→ atomically smooth Channel thickness set by ALE growth→ atomically precise Not shown: gate dielectric, gate metal, S/D metal

Images HfO 2 TiN fin, ~8nm 100 nm fin pitch drain 50 nm fin pitch source channel 10 nm thick fins, 100 nm tall

Goal: Tall Fins for High Drive Current Goal: fin height >> fin pitch (spacing)→ more current per fin → less fins needed → higher integration density 7 Higher density→ shorter wires→ smaller C wire V dd /I, C wire V dd 2 /2

Is the IC Area Reduction Significant ? Clock/interconnect drivers need large drive currents. Area reduction for these is likely substantial. FETs in Cache Memory & Registers are drawn at minimum width No area reduction for these. Most, but not all, Logic Gates will be drawn at minimum width. Benefit must be evaluated by VLSI architect, not by device physicist.

300 mV Logic: Can We Address The CV 2 /2 Limit ? The CV 2 /2 dissipation limit Subthreshold logicTunnel FETs Threshold set for acceptable off-state dissipation I off V dd. V dd set for target I on, hence acceptable CV dd /I on. V dd C wire With minimum C wire, a minimum switching energy C wire V dd 2 /2 is set Bandgap of P+ source truncates thermal distribution. Potential for low I off at low V dd. Obtaining high I on /V dd is the challenge. V dd is simply reduced. Decreases energy CV dd 2 /2. Increases delay CV dd /I on.

Goal: Tall Fins for Low-Power, Low-Voltage Logic Supply reduced from 500mV to 268 mV while maintaining high speed. 3.5:1 power savings ? Must consider FET capacitances. Assumes (Hodges & Jackson, 2003): (1) Charge-control analysis (2) I on,PFET / W g =0.5*I on,NFET / W g (3) FO=FI=1

Power and Delay Comparison 11 Planar FET, V dd =500 mV tall finFET, V dd =268 mV I on =20  A, I off =2nA C g-ch =I on L g /v inj V dd =1.3 aF C g-ch =I on L g /v inj V dd =3.7 aF C gd-f = C gs-f = 6 aF C gd-f = C gs-f = 60 aF C wire = 2 fF (10  m length) C total = 2.1 fF (various multipliers) delay= 52 ps C total V DD 2 = 0.26 fJ C total = 2.9 fF (various multipliers) delay= 39 ps C total V DD 2 = 0.11 fJ

Why tall finFETs ? Why Not Just Subthreshold Logic ? Planar FET, V dd =268 mV tall finFET, V dd =268 mV I on =2.0  A I on =20  A Low I on → large CV DD /I on delay, subthreshold logic is slow. 12

Why tall finFETs ? Why Not Just Subthreshold Logic ? Planar FET, V dd =268 mV tall finFET, V dd =268 mV I on =20  A Die size increased 10:1 (also: longer interconnects, etc) 13

Tunnel FETs & High-Aspect-Ratio Fins Quick performance estimate: Assume, for a moment, that P/N tunneling probability is 10%*. Typical of the best reported ohmic contacts.* *Contact to 6E19/cm 3 doping: m*=0.1m 0, 0.2 eV, 0.5 nm barrier Baraskar, et al: Journal of Applied Physics, 114, (2013) Then on-currents for tunnel FETs are ~10:1 smaller than that of normal FETs. Unless I on /W g is high, tunnel FETs will suffer from either large C wire V/I gate delays or (increasing FET widths) large die areas. Using high-aspect ratio fin structures, tunnel FET drive currents can be increased. Parasitic fringing capacitance will then also contribute to CV/I & CV 2.

finFETs Defined by Atomic Layer Epitaxy InGaAs finFET: 8 nm thick fin 200 nm high InGaAs NFET height>> pitch InGaAs PFET Benefits: Enables ~4 nm fin bodies→ 8 nm gate length 10:1 more current per unit die area → smaller IC die area Enables high speed, ultra low-power logic, V dd ~300 mV Fin thickness defined by Atomic layer epitaxy → nm thickness control Fin height defined by sidewall growth → 200 nm high fins D. Elias, DRC 2013, June, Notre Dame

(end)

Backups

Lithographic Scaling vs. 3-D for High-Density Logic 18 Past VLSI Scaling: more FETs per IC because of (1) shorter gate & contact lengths (2) increased mA/micron→ less gate width W g. Today, I on / W g (mA/micron) is not increasing soon, once S/D tunneling dominates, I on /W g will start to decrease Sub-16nm lithography is also difficult. Further reductions in feature size are expensive. Can 3-D transistors increase integration density ? Clear: increased I on for a given FET footprint size. Less clear: decreased size of minimum-geometry FET. Clear: can suppress S/D tunneling: tunneling distance >> lithographic distance.

Scaling in the S/D tunneling limit At 4-8 nm Gate Lengths, high leakage from source/drain tunneling increases exponentially as gate length is reduced. Reducing tunneling through increased mass can be counterproductive increasing m* → less tunneling, but lower FET on-current→ need more die area Instead: Ultra-tall fins to increase the integration density example: 3-input NOR gate. other cases: clock & interconnect drivers 19

Minimum gate length: source-drain tunneling (2) increased m* → decreased I on /W g → decreases packing density analysis: Rodwell et al, 2010 DRC 20

Geometric Solutions to S/D Tunneling Transport (& tunneling) distance larger than lithographic gate length. Feature used NOW in our current planar FETs. Can be incorporated in high-aspect-ratio finFETs UID InGaAs vertical spacer 21

Why Not Release Fins Before S/D Regrowth ? Images of released ~10 nm fins: S/D regrowth provides mechanical support D. Elias, DRC 2013, June, Notre Dame

Wire Lengths & Wire Capacitances in VLSI 23 FET logic gate gate die area Integrated Circuit Layout interconnect more current per fin→ less fins needed → higher integration density more current per fin→ shorter wires→ smaller C wire V dd /I, C wire V dd 2 /2

FET Capacitances, Interconnect Capacitances 24 Similar capacitances in finFET

Gate Capacitance, Energy, and Delay 25 Assumes: (1) Charge-control analysis* (2) I on,PFET / W g =0.5*I on,NFET / W g (3) FO=FI=1 *Hodges & Jackson, 2003