Presentation is loading. Please wait.

Presentation is loading. Please wait.

Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.

Similar presentations


Presentation on theme: "Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana."— Presentation transcript:

1 Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana 3, Brian Thibeault 1, William Mitchell 1, Susanne Stemmer 3, Arthur Gossard 1,3, Errol Sanchez 2, and Mark Rodwell 1 1 ECE, University of California, Santa Barbara 2 Applied Materials, Santa Clara 3 Materials Department, University of California, Santa Barbara VLSI-TSA 2015 HsinChu, Taiwan

2 Why InGaAs/InAs FETs? III-V channel: low electron effective mass, high velocity, high mobility  higher current at lower V DD Problems: -Devices: low bandgap  high BTBT leakage high permittivity  worse electrostatics, large SS and DIBL - Materials: Integration of III-V on Si, High-K dielectrics on III-V Goal: Fabricate ultrathin channel III-V FETs on Si 2 C. Huang et al., DRC 2014

3 Record III-V FETs on InP substrates S. Lee et al., VLSI 2014 3 Vertical Spacer N+ S/D

4 MOSFET: 2.5nm ZrO 2 / 1nm Al 2 O 3 / 2.5nm InAs 61 mV/dec Subthreshold swing at V DS =0.1 V Negligible hysteresis 4

5 Applied Materials III-V buffer on Si R q =3.1 nm RHEED in MBE 5

6 UCSB III-V FET epitaxy R q = 6.9 nm Surface roughness is degraded after FET epitaxy. 6

7 UCSB Gate Last Process Flow 7 Channel HfO 2 III-V Barrier Si substrate N+ S/D Isolation Strip dummy gate Digital etch Deposit dielectric FGA anneal Channel Ni III-V Barrier Si substrate N+ S/D Lift-off gate metal Channel Ni III-V Barrier Si substrate N+ S/D Ti/Pd/Au Deposit S/D contacts Channel HSQ III-V Barrier Si substrate Pattern dummy gate Channel III-V Barrier Si substrate MBE/MOCVD grown device epilayer Channel HSQ III-V Barrier Si substrate N+ S/D MOCVD source/drain regrowth

8 TEM images of III-V FET on Si Lg~20nm 8

9 Short gate length: L g -20 nm High G m ~2.0 mS/μm at V D =0.5 V. SS~140 mV/dec. at V D =0.5 V and 101 mV/dec. at V D =0.1 V High I on >1.4 mA/um at V GS =1V. 9

10 SS~74 mV/dec. for L g -1 μm devices. Off-state leakage dominated by band-to-band tunneling. Negligible buffer leakage. Long gate length: L g -1 μm 10

11 On-state characteristics Long L g devices show similar G m to record FETs  comparable mobility to 2.5 nm InAs on InP. ~25% degradation on S/D sheet resistance and contact resistance. Thicker channel and degraded R S/D decrease G m at short L g. 11

12 Subthreshold Characteristics SS and DIBL are degraded due to thicker channel. Higher SS at long L g : higher interface trap density. 12

13 Within-wafer uniformity:L g -45nm devices G m ~1.82 mS/μm SS~123 mV/dec 13

14 Benchmark of III-V FETs on Si Further improved material quality reduces R on and increases I on. Further improved surface roughness allows further thinning the channel, and improves C g, SS and I on. I on ~235μA/μm @100nA/μm I off 14

15 Summary 15 Demonstrated high performance, and high yield III-V UTB-FETs on Si substrates using the combination of MOCVD and MBE growth, featuring 3.5~4 nm ultrathin channel and L g ~20 nm. Achieved high G m ~ 2.0 mS/μm at V D =0.5V and high I on ~1.4 mA/m at V GS =1V and L g ~20 nm. Improving channel surface roughness will allow further channel thickness scaling, and improve SS and I on. Improving material quality will reduce R on and increase G m and I on. Thank you! Question?

16 (backup slides follow)

17 Within-wafer uniformity: V th of Lg-45 nm devices 0.0700.0450.0740.0430.020 0.0850.0540.0630.0440.054 0.0410.1020.0470.0560.055 V t, lin (V) @ 1 μA/μm, V DS =0.1V 20 mm 12 mm A B C 12354 -0.003-0.0410.022-0.020-0.049 0.036-0.0060.008-0.042-0.006 -0.0320.042-0.0260.003-0.020 20 mm 12 mm A B C 12354 V t,sat (V) @ 1 μA/μm, V DS =0.5V

18 Hero device: VLSI 2014 late news (Sanghoon Lee) Courtesy of Sanghoon Lee (UCSB) 18

19 Reducing leakage (3): Ultra-thin channel 19 S. Lee et al., VLSI 2014 Record III-V MOS

20 MOSFET: 2.5nm ZrO 2 / 1nm Al 2 O 3 / 2.5nm InAs 61 mV/dec Subthreshold swing at V DS =0.1 V Negligible hysteresis 20

21 Compared to Intel 14nm finFET I off =10nA/  m, I on =0.45mA/  m @V DS =0.5V per  m of fin footprint Re-normalizing to fin periphery: ~0.24 mA/  m S. Natarajan et al, IEDM 2014, December, San Francisco 21

22 Reducing leakage (5): Recessed InP S/D spacer 22 12 nm InGaAs spacer5 nm Recessed InP spacer L g -60 nm C-Y Huang, 2014 Les Eastman Conference

23 Reducing leakage (6): Doping-graded InP spacer Doping-graded InP spacer reduces parasitic source/drain resistance and improves G m. Gate leakage limits I off ~300 pA/μm. 23 R on at zero L g (Ω∙μm) 5 nm UID InP 13 nm UID InP Doping graded InP ~199~364~270 L g -30 nm, 30Å ZrO 2 C-Y Huang, 2014 IEDM

24 Reducing leakage (7): Thicker Dielectric Minimum I off ~ 60 pA/μm at V D =0.5V for L g -30 nm 100:1 smaller I off compared to InGaAs spacer InP graded spacer 24 60 pA/μm 38Å ZrO 2 InGaAs spacer C-Y Huang, 2014 IEDM


Download ppt "Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana."

Similar presentations


Ads by Google