GENETIC ENGINEERING.

Slides:



Advertisements
Similar presentations
Human Technology Genetically Modified Organisms, Artificial Selection, Selective breeding, Animal husbandry, Gene therapy.
Advertisements

1 Review Give two practical applications for both transgenic plants and animals Make Judgments List reasons why you would or would not be concerned about.
At the end of this lesson you should be able to 1. Define Genetic Engineering 2. Outline the process of genetic engineering involving some or all of the.
Applying Our Knowledge of Genetics. Selective Breeding Selective breeding (domestication) has been going on for centuries. It is simply the process by.
Advances in Genetics (p. 110)
Biotechnology Technique #3: Genetic Engineering Use the slides that follow to fill in the notes on page 6 of your note packet. This is Buckey and Tucker.
BY DESIREE OSORNIO & BLANCA HERNANDEZ ENGLISH, PER.2 Genetic Engineering.
Current Events October 6, Cookies Bad for the Environment? Palm oil found in baked goods, shortening, cooking oils, candy bars, margarine, and candy.
Biotechnology Review.
Genetic Engineering Genetic Engineers can alter the DNA code of living organisms. Selective Breeding Recombinant DNA Transgenic Organisms Cloning Selective.
CHAPTER 13 Genetic Engineering Changing the Living World ● Selective Breeding Choosing the “best” traits for breeding. Takes advantage of naturally.
Why do these pigs glow in the dark?. Genetic Engineering What are some ways that we use genetics to our advantage?
Genetic Engineering Chapter 13 (Sections 1, 2 and 4)
Advances in Genetics Key Concepts
Genetic Engineering & Biotechnology
Genetic Engineering: Transcription, Translation, and Genetically Modified Organisms.
GM Food DNA Fingerprinting Gene Therapy DNA Microarray Establishing Relationships.
Introduction to Biotechnology & Genetic Engineering
GENETIC ENGINEERING. Genetic engineering examples include taking the gene that programs poison in the tail of a scorpion, and combining it with a cabbage.
Chapter 13 Genetic Engineering.
Chapter 15 – Genetic Engineering
CHAPTER 13 Genetic Engineering Changing the Living World Selective Breeding Choosing the “best” traits for breeding Most domestic animals are products.
Advances in Genetics Pages
GENETIC ENGINEERING B-4.9. GENETIC ENGINEERING GENETIC ENGINEERING IS THE PROCESS OF SPECIFIC GENES IN AN ORGANISM IN ORDER TO ENSURE THAT THE ORGANISM.
Medicine. By inserting a gene for human insulin into an E.Coli bacterium, the E. coli will make lots of insulin, which scientists and doctors can collect.
CHAPTER 13 Genetic Engineering.
Genetic Engineering Give brief examples of products made using genetic engineering (D) Describe the process of making human insulin through genetic modification.
Transgenic Organisms.
Transgenic Organisms. Warm up Protein Synthesis Re-looping Warm Up #3 SILENT, Independent, open notes.
The passing of traits from parents to offspring
WARM UP 3/14 (7 pts) Look through your notes and write 7 facts!
An Ethical Debate.  Humans have been breeding farm animals for thousands of years  Selective breeding is done to get the traits a person wants.
DNA Technology and Genomics. Genetic Engineering/ DNA Technology 3 types of Cloning Technologies: 1.Recombinant DNA Technology/ DNA Cloning 2. Reproductive.
Can We End World Hunger? Malnutrition and vitamin deficiencies? Golden rice is genetically modified rice that now contains a large amount of A-vitamins.
Genetic Engineering Genetic Engineering is the process of making changes in the DNA code of living organisms. Genetic Engineering and DNA Technology can.
Artificial Selection and Genetic Engineering Selective Breeding Choosing the BEST traits for breeding. Most domesticated animals are products of selective.
At the end of this lesson you should be able to 1. Define Genetic Engineering 2. Understand that GE alters DNA 3. Understand the function of restriction.
Cloning and Genetic Engineering
Modern Day Genetics.
Genetic Engineering Manipulating genes outside of the organisms’ normal process.
Chapter 15: Genetic Engineering
Advances in Genetics Human Genetics and Genetic Technology.
At the end of this lesson you should be able to 1. Define Genetic Engineering 2. Understand that GE alters DNA 3. Understand the function of restriction.
15.3 Applications of Genetic Engineering. Agriculture and Industry –Almost everything we eat and much of what we wear come from living organisms. –Researchers.
DNA Technology. Please pick up notes on the front desk.
Chapter 15 Genetic Engineering Cloning and Transgenic Organisms.
Genetic Influences and Technology. Genetic Technology outline  How environment affects genes  Genetic modification  Transgenic organisms  Gene.
Chapter 5-3 Putting it all together for the Advances in Genetics – where are scientists going with all this?
Genetic Engineering The processes. Selective Breeding Selective breeding is also known as artificial selection. Humans use the phenotypic characteristics,
Genetic Engineering.
CHAPTER 13 Genetic Engineering.
Biotechnology Biotechnology is the manipulation of living things to make useful products Causes changes in an organism Examples of genetic biotechnology.
Biotechnology Genetic Engineering.
DNA Technology Human Genome Project
AIM: How can we develop organisms with desirable traits? DO NOW:
13–4 Applications of Genetic Engineering
Biotechnology Biotechnology is the manipulation of living things to make useful products Causes changes in an organism Examples of genetic biotechnology.
Biology Unit 5 Notes: Genetic Engineering
What is Biotechnology? the controlled and deliberate manipulation of living things (whether living cells or cell components) for the efficient manufacture.
By applying the principles of modern genetics.
Genetic Engineering.
Genetic Engineering Genetic Engineering is the process of making changes in the DNA code of living organisms. Genetic Engineering and DNA Technology can.
Genetic Engineering Understand the different aspects of gene technology. Why they are used and the issues that come with them.
Ch. 13 Genetic Engineering
EQ: How can we modify organisms?
Knock out Organisms Mice have had the gene that regulates weight gain and muscle mass removed Chickens.
Transgenic Organisms.
Genetic Engineering.
What is Biotechnology? the controlled and deliberate manipulation of living things (whether living cells or cell components) for the efficient manufacture.
Biotechnology.
Presentation transcript:

GENETIC ENGINEERING

GENETIC ENGINEERING The process of replacing specific genes in an organism in order to ensure that the organism expresses the desired trait. Takes genes from one organism and places into another

Where are the genes? Genome—refers to all the genetic material in an organism A gene map—shows the relative location of each known gene on a chromosome

How does it work? A single gene, a half page recipe in the 52-thousand-page set of recipe books, can direct an organism to make new traits or remove them

CLONING Clones are exact genetic copies…every single bit of the DNA is identical. Clones can happen naturally—identical twins

CLONING Cloning can be done at different levels: gene, therapeutic, or organismal

What cloning isn’t…

What cloning is… https://www.youtube.com/watch?v=IG36VsrKYF4

CLONING

STEM CELLS Undifferentiated cells that have the potential to become specialized

GENE THERAPY Scientists insert a normal gene into an absent or abnormal gene Once inserted, the normal gene begins to produce the correct protein or enzyme, eliminating the cause of the disorder

GMO (GENETICALLY MODIFIED ORGANISMS) Genetically modified (GM) foods possess specific traits such as tolerance to herbicides or resistance to insects or viruses. What is the potential human health impact? What is the potential environmental impact?

What Have I Eaten? GMO food list By most estimates, up to 70% of the processed foods at your local grocery store contain at least one ingredient that’s been genetically altered Genetically modified to travel better so don’t have to be picked when green – better tasting! Genetically modified to reduce being eaten by insects.

WHAT CAN GENETIC ENGINEERING DO FOR US??

Hope to develop plants that: Can manufacture natural insecticides Are higher in protein Spoil more slowly

Sounds nice, but: Insecticides kill most insects, but some do survive…they have genes that are basically immune to the poison To get rid of THOSE insects, we need new poisons THINK ABOUT IT… There is so much poison being used, people have to wear protective suits!!! And THEN you eat that food!!!

Hope to develop animals that: Are bigger Are faster growing Are resistant to disease The bad… Farmers use antibiotics, and as animals become resistant, they use even more… This leads to decreased nutritional value and an increase in antibiotic-resistant infections.

And the ugly… Recombinant bovine growth hormones (rBGH) are given to cows. rBGH is then found in milk products… Some studies have linked this hormone to infertility and fetal development problems (just from drinking milk!!) The milk even has PUS in it—from the infections the cows suffered from too much hormone! (EWWW)

Hope to develop bacteria that: Produce hormones such as human insulin or human growth hormone But recently… Human insulin produced by GM microbes have caused human deaths! This is currently being investigated by the FDA.

In people with cystic fibrosis, one of the genes is faulty and cannot do its job properly. To fix the problem, a copy of the same gene from a healthy person is spliced into a virus. The patient’s lungs are infected with the virus. It delivers the working gene into the patient’s cells. The cells can then make the right protein, and the patient can breathe normally. Patient’s cell Patient’s DNA Faulty Gene Virus DNA New working gene Virus DNA with new gene SOUNDS GOOD BUT…There have been no safety studies for long term effects of the genes. There could be unknown consequences…

Can We End World Hunger? Malnutrition and vitamin deficiencies? Golden rice is genetically modified rice that now contains a large amount of A-vitamins. Or more correctly, the rice contains the element beta-carotene which is converted in the body into Vitamin-A. So when you eat golden rice, you get more vitamin A. Beta-carotene gives carrots their orange color and is the reason why genetically modified rice is golden. For the golden rice to make beta-carotene three new genes are implanted: two from daffodils and the third from a bacterium Golden rice

Can We End World Hunger? Malnutrition and vitamin deficiencies? The thought… The rice can be considered a particular advantage to poor people in underdeveloped countries. They eat only an extremely limited diet lacking in the essential bodily vitamins. The consequences of this restricted diet causes many people to die or become blind. This is particularly true in areas of Asia, where most of the population live on rice from morning to evening. In reality… World hunger is a result of people not having access to food. The world produces about 12 billion tons of food per year, but only 7 billion tons are being consumed. Essentially, about 1/3 of our food supply is being wasted…GMOs aren’t going to help that!!!

Fast-growing salmon AquaBounty’s genetically modified salmon grows twice as fast as the conventional variety — the photo shows two same-age salmon with the genetically altered one in the rear. The company says the fish has the same flavor, texture, color and odor as a regular salmon; however, the debate continues over whether the fish is safe to eat. Genetically engineered Atlantic salmon has an added growth hormone from a Chinook salmon that allows the fish to produce growth hormone year-round. Scientists were able to keep the hormone active by using a gene from an eel-like fish called an ocean pout, which acts as an “on switch” for the hormone. If the FDA approves the sale of the salmon, it will be the first time the government has allowed modified animals to be marketed for human consumption. According to federal guidelines, the fish would not have to be labeled as genetically modified.

Fast-dying salmon??? GM salmon was created to increase the size of the fish more quickly, however, studies were conducted that showed that GM salmon are much less successful at producing viable offspring. Non-random mating habits of the wild salmon (they are more attracted to the larger GM salmon) would imply a die-off of the wild type genotypes leading to mass extinction of salmon populations. Computer simulations have predicted die-outs to occur in as little as 2 years after release into the wild. This would have a very serious impact on ecosystems all over the planet.

Will We Be Able To Cure Cancer With Gene Therapy? Cancer happens when body cells grow out of control. Scientists have found a gene called p-53 which normally keeps cells under control. They think that in some people with cancer, the disease begins because the p-53 gene doesn’t work properly – perhaps because of a mistake in the gene code. Experts are now looking for a way to cure cancer by modifying faulty DNA to make the p-53 gene work. Lung cancer cells (530x). These cells are from a tumor located in the alveolus (air sac) of a lung.                              

Going Bananas? According to recent reports, the world may soon be out of bananas. Because of the starchy fruit’s unique method of reproduction, it seems, banana plantations in Africa, Asia and Central America are uniquely susceptible to fungi, viruses and pests. Unless scientists can find a way to genetically enhance the banana’s ability to ward off parasites, we could be bananaless in ten years. Several agroscience companies believe they can genetically engineer such an invincible banana by copying parts of the genetic codes of other fruits and instilling them into the banana. http://gslc.genetics.utah.edu/features/gmfoods/

Glow-in-the-dark cats In 2007, South Korean scientists altered a cat’s DNA to make it glow in the dark and then took that DNA and cloned other cats from it — creating a set of fluffy, fluorescent felines. Here’s how they did it: The researchers took skin cells from Turkish Angora female cats and used a virus to insert genetic instructions for making red fluorescent protein. Then they put the gene-altered nuclei into the eggs for cloning, and the cloned embryos were implanted back into the donor cats — making the cats the surrogate mothers for their own clones. What’s the point of creating a pet that doubles as a nightlight? Scientists say the ability to engineer animals with fluorescent proteins will enable them to artificially create animals with human genetic diseases.

Enviropig The Enviropig, or “Frankenswine,” as critics call it, is a pig that’s been genetically altered to better digest and process phosphorus. Pig manure is high in phytate, a form of phosphorus, so when farmers use the manure as fertilizer, the chemical enters the watershed and causes algae blooms that deplete oxygen in the water and kill marine life. So scientists added an E. Coli bacteria and mouse DNA to a pig embryo. This modification decreases a pig’s phosphorous output by as much as 70 percent — making the pig more environmentally friendly.

Pollution-fighting plants Scientists at the University of Washington are engineering poplar trees that can clean up contamination sites by absorbing groundwater pollutants through their roots. The plants then break the pollutants down into harmless byproducts that are incorporated into their roots, stems and leaves or released into the air. In laboratory tests, the transgenic plants are able to remove as much as 91 percent of trichloroethylene — the most common groundwater contaminant at U.S. Superfund sites — out of a liquid solution. Regular poplar plants removed just 3 percent of the contaminant.

Medicinal eggs British scientists have created a breed of genetically modified hens that produce cancer-fighting medicines in their eggs. The animals have had human genes added to their DNA so that human proteins are secreted into the whites of their eggs, along with complex medicinal proteins similar to drugs used to treat skin cancer and other diseases. What exactly do these disease-fighting eggs contain? The hens lay eggs that have miR24, a molecule with potential for treating malignant melanoma and arthritis, and human interferon b-1a, an antiviral drug that resembles modern treatments for multiple sclerosis.

Another way to manipulate genotypes and phenotypes of organisms is how we breed them…

SELECTIVE BREEDING Selecting and breeding only organisms with a desired trait in order to produce the next generation. Almost all domesticated animals and most crop plants are the result of selective breeding.

SELECTIVE BREEDING Once the breeder successfully produced offspring with the desired characteristic…usually inbreeding occurs. Remember…recessive gene defects will show up more frequently after several generations of inbreeding!

HYBRIDIZATION Another form of selective breeding Choosing and breeding organisms that show strong expression for two different traits in order to produce offspring that express BOTH traits.

HYBRIDIZATION Labradoodle (Labrador Retriever + Poodle) Puggle (Beagle + Pug) Cockapoo (Cocker Spaniel + Poodle)

HYBRIDIZATION HORSE + DONKEY = MULE

HYBRIDIZATION Female lion with a male tiger…TIGON Male lion with a female tiger…LIGER

Recognize this bird?