Electronics for Si-W calorimeter

Slides:



Advertisements
Similar presentations
CALICE Dave Bailey. Aims and Objectives Develop the technology to build a high- resolution tracking calorimeter for ILC experiments Main thrusts: –Testbeam.
Advertisements

Jeudi 19 février 2009 Status of SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin-Chassard, Christophe de La.
R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
J-C. BRIENT (LLR) 1  Introduction with pictures  Prototype design and construction  R&D on the design of the full scale calorimeter CALICE - ECAL silicon-tungsten.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
27 th May 2004Daniel Bowerman1 Dan Bowerman Imperial College 27 th May 2004 Status of the Calice Electromagnetic Calorimeter.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.
ECAL EUDET MODULE progress & perspective EUDET annual meeting, oct, 18 st, Munich.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay on behalf of the CALICE and EUDET collaborations
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
EUDET JRA3 ECAL and FEE C. de La Taille (LAL-Orsay) EUDET status meeting DESY 10 sep 2006.
EUDET JRA3 ECAL in 2007 : towards “The EUDET module” C. de La Taille IN2P3/LAL Orsay.
Vendredi 18 décembre 2015 Status report on SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin- Chassard, Christophe.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
Second generation Front-End ASICs for CALICE LCWS07 Hamburg C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration HaRDROCSKIROCSPIROC.
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
Front-End electronics for Future Linear Collider W-Si calorimeter physics prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
Aurore Savoy-Navarro 1), Albert Comerma 2), E. Deumens 3), Thanh Hung Pham 1), Rachid Sefri 1) 1) LPNHE-Université Pierre et Marie Curie/IN2P3-CNRS, Fr.
14 jan 2010 CALICE/EUDET FEE status C. de LA TAILLE.
ILC/EUDET developments at LAL Scientific council 23/9/05 B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
1 Front-end electronic for Si-W calorimeter Sylvie Bondil Julien Fleury Christophe de La Taille Gisèle Martin Ludovic Raux.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
1 Progress report on the LPSC-Grenoble contribution in micro- electronics (ADC + DAC) J-Y. Hostachy, J. Bouvier, D. Dzahini, L. Galin-Martel, E. Lagorio,
CALICE/EUDET FEE status C. de LA TAILLE. 31 aug 2009 EUDET SC meeting Status of JRA3 Front End Electronics 2 ILC front-end ASICs : the ROC chips SPIROC.
Electronics for Si-W calorimeter LCWS06 Bangalore – March, 10 th Gérard Bohner, Pascal Gay, Jacques Lecoq Samuel Manen, Laurent Royer Michel Bouchel, Bernard.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting London 2008.
SKIROC status Calice meeting – Kobe – 10/05/2007.
SiW Electromagnetic Calorimeter - The EUDET Module Calorimeter R&D for the within the CALICE collaboration SiW Electromagnetic Calorimeter - The EUDET.
Marc Anduze first drawings of Ecal eudet module COPIED FROM : Marc Anduze PICTURES FROM : CALICE/EUDET electronic meeting – CERN – 12 July 07.
SOCLE Meeting Dec Roman Pöschl LAL Orsay On behalf of the groups performing Electronics R&D - Introduction - SKIROC2 – Handling the large Dynamic.
CALICE, Shinshu, March Update on Micromegas TB analysis Linear Collider group, LAPP, Annecy CALICE collaboration meeting 5-7 March 2012, Shinshu,
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
CALICE ECAL meeting VFE ASIC Next & next to next version 17 Janvier 2006, LAL Orsay.
STATUS OF SPIROC measurement
3-bit threshold adjustment
A 12-bit low-power ADC for SKIROC
ECAL front-end electronic status
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
ECAL EUDET MODULE Summary talk
DHCAL TECH PROTO READOUT PROPOSAL
R&D activity dedicated to the VFE of the Si-W Ecal
C. de La Taille IN2P3/LAL Orsay
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
CALICE/EUDET Electronics in 2007
Front-End electronics for CALICE Calorimeter review Hamburg
Electronics for the E-CAL physics prototype
Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard
Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard
Joint Research Activity 3: Calorimetry
02 / 02 / HGCAL - Calice Workshop
prototype PCB for on detector chip integration
STATUS OF SKIROC and ECAL FE PCB
ECAL Electronics Status
SKIROC status Calice meeting – Kobe – 10/05/2007.
Stéphane Callier, Dominique Cuisy, Julien Fleury
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Signal processing for High Granularity Calorimeter
Front-end Electronics for the LHCb Preshower Rémi CORNAT, Gérard BOHNER, Olivier DESCHAMPS, Jacques LECOQ, Pascal PERRET LPC Clermont-Ferrand.
AIDA KICK OFF MEETING WP9
Presented by T. Suomijärvi
Presentation transcript:

Electronics for Si-W calorimeter LCWS06 Bangalore – March, 10th Gérard Bohner, Pascal Gay, Jacques Lecoq Samuel Manen, Laurent Royer Michel Bouchel, Bernard Bouquet, Julien Fleury Christophe de La Taille, Gisèle Martin, Roman Poeschl

General introduction

General overview of Si-W calo CALICE ECAL proposal (LDC) : Octogonal shape 40 identical structures Active materials in detector slab 30-120 Million channels Depending on pad size (1cm or .5cm) Electronic requirement : Electronic embedded in the slab Ultra-low power consumption (~100µW/Ch) To avoid active cooling Ultra-thin design To reduce moliere radius R&D on a technologic prototype as started

EUDET framework European funding for ILC detectors CALICE labs are members of JRA3 (Joint Reasearch Activities for calorimeters) Part of this funding will be used to build a technologic prototype of ECAL EUDET is a 4-year funding program  Technologic prototype is a 2009 deliverable That technologic prototype has to be as close as possible to final design

EUDET : ECAL emodule Electromagnetic calorimeter technologic prototype Prototype of a (~ 1/6) module 0 : one line & one column 150 cm long, 12 cm wide 30 layers 1800 + 10800 channels Test full scale mechanics + PCB Can go in test beam Test full integration + edge communications Similar in #channels as physics prototype ©M. Anduze (LLR)

R&D on PCBs

Thickness considerations Chip in the detector Thickness Ultra-thin PCB Chip burried in PCB 1750µm diodes+ FE electronic PCB (600µm) FE chip (1mm) Wafer (500µm)

Length considerations Industry can’t build 1.5m PCB Stitchable PCBs (no room for cables) Feasability prototypes in fab 1.5m Glue ? Solder ? PCB type 1 PCB type 2 PCB type 3

Front-end chip R&D

Requirements for FEE Ultra-low dissipation (100µW/ch) involves : Self-triggered ASIC : Zero-suppress on the chip On chip A/D conversion and memory to buffer outputed data Ultra-thin design involves : Stand-alone ASIC : no room for decoupling capacitance Huge number of channels involves : System on Chip : all features have to be integrated Calibration, ADC, analogue memory, digital memory, BCID, back-end bus, etc.  Chip output : digital formated data

Power comsumption & integration The critical issue : power consumption ATLAS FEB 1W/Ch 400*500mm - 1998 FLC physic proto 5mW/Ch 10*10mm - 2002 ILC 100µW/Ch 2010

Power flexing : pulsed electronic Based on TESLA TDR Time between two trains: 200ms (5 Hz) time Time between two bunch crossing: 337 ns Train length 2820 bunch X (950 us) A/D conv. DAQ IDLE MODE Acquisition 1ms (.5%) .5ms (.25%) .5ms (.25%) 199ms (99%) 99% duty cycle 1% duty cycle  See ILC_PHY4 results

On chip formated data  32bits / event without Chip ID Channel nb - 6 bit ADC result - 12 bit Chip ID - x bit BCID – 12 bit Gain - 2 bit Position Energy Time  32bits / event without Chip ID

Data rates Assuming TESLA like bunch structure Raw Data volume Bunch crossing period within bunch train = 176ns ~ 200ns Number of crossings per bunch train = 4886 ~ 5000 Bunch train length = 860µs ~ 1ms Bunch train period =250ms ~ 200ms Raw Data volume 2 bytes Energy data/Channel, 20 Million channels Raw data per bunch train ~ 20M  5000  2 ~ 200GBytes ECAL No way to digitize inside the ~ ms train 10 kbytes/channel/train ~ 50 kbytes/ch/s Physics data rate : 90 Mbytes/train = ~20 bytes/ch/s Zero suppression mandatory 103 rate reduction -> drastic for power dissipation Digitize only signals over 1/2MIP with noise < MIP/10 Allow storage in front-end ASIC

R&D building blocks

High dynamic range structure Low noise charge preamp 3 integration shaper (G. 2, 20 & 100)

Measurement (Oscilloscope) Functionaality test Simulation Measurement (Oscilloscope) Gain 100 Gain 20 Gain 2

Linearity measurement Gain 2 : NL 4‰ Gain 20 : NL 4‰ Gain 100 : NL 7‰

Pipeline ADC 10 bits ADC → 10 stages Vin b1 b2 b3 b4 b5 b6 b7 b10 b9 b8 Amplifier Gain=2 To VIN stage N+1 Vref VIN Gnd Comparator Bit N out Vref Stage N of pipeline ADC block schema

Pipeline ADC measurement Gain : 2.015 instead of 2 Offset : 18mV (cumulated) 1.5 bit/stage correction integral non linearity ±2 LSB

ILC_PHY4 : a first step toward final ASIC 18 channels Multi gain charge preamp (167mV/pC 2.5V/pC) Dual shaper gain 1&10 2 track and hold Switchable calibration injection capacitance 2 analogue multiplexers 181 One for gain 1 and one for gain 10 The two MUX output are MUX to a single output 1 ADC – 12 bit / 1MSPS – IP from AMS (founder) An internal bias device including : Internal decoupling on current sources Idle mode on whole analogue parts of the chip

ILC_PHY4 layout & status Chip produced & packaged Test board produced Missing test board firmware Ready before summer Test to be performed April/May 06 12 bits ADC IP

Power pulsing on ILC_PHY4 Tested on a stand-alone preamp Switching from idle current (i/1000) to nominal On-setting time < 20 µs Pulse amplitude and noise identical in pulsed mode than in steady mode Allows to reduce power by 99% with beams 2ms/200ms Target power of 100 µW/channel appears within reach : to be validated in testbeam in 2006 with ILC_PHY4 ASIC RFCF signal Log scales ! ON 20 µs Ready for pulse

Schedule Multi channel prototype foundry planned in spring06 including : Analogue front-end Power pulsed Self-biased Self-trigger Pipeline ADC (LPCC) Stitchable PCB planned for october06

Conclusions CALICE collaboration help by EUDET (european funding) will built a technological prototype as close as possible to the final detector. That technological prototype will validate the feasibility of the full detector Many ASIC R&D are performed to have all the building blocks before the end of the year Thin stitchible PCBs are currently in design.

Spare slides

Test plans

Front-end ASIC in a EM shower Summer 06 @CERN with FLC_PHY3 + FEV3

A/D conversion on chip ILC_PHY4 test to check mixed chip performance New foundry LPC+LAL with LPC 12-bit pipeline ADC