2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana

Slides:



Advertisements
Similar presentations
by Alexander Glavtchev
Advertisements

Alain Espinosa Thin Gate Insulators Nanoscale Silicon Technology PresentersTopics Mike DuffyDouble-gate CMOS Eric DattoliStrained Silicon.
Contact Modeling and Analysis of InAs HEMT Seung Hyun Park, Mehdi Salmani-Jelodar, Hong-Hyun Park, Sebastian Steiger, Michael Povoltsky, Tillmann Kubis,
IEEE Device Research Conference, June , Notre Dame
Development of THz Transistors & ( GHz) Sub-mm-Wave ICs , fax The 11th International Symposium on.
Derek Wright Monday, March 7th, 2005
Simulations of sub-100nm strained Si MOSFETs with high- gate stacks
High-K Dielectrics The Future of Silicon Transistors
Xlab.me.berkeley.edu Xlab Confidential – Internal Only EE235 Carbon Nanotube FET Volker Sorger.
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
Full-band Simulations of Band-to-Band Tunneling Diodes Woo-Suhl Cho, Mathieu Luisier and Gerhard Klimeck Purdue University Investigate the performance.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
1 Motivation: Embracing Quantum Mechanics Feature Size Transistor Density Chip Size Transistors/Chip Clock Frequency Power Dissipation Fab Cost WW IC Revenue.
Device Research Conference 2006 Erik Lind, Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University of California,
IEEE Central NC EDS/MTT/SSC Society Friday, Nov. 5th, 2010 The Nanoscale MOSFET: Physics and Limits Mark Lundstrom 1 Electrical and Computer Engineering.
Full –Band Particle-Based Analysis of Device Scaling For 3D Tri-gate FETs By P. Chiney Electrical and Computer Engineering Department, Illinois Institute.
Optional Reading: Pierret 4; Hu 3
Device Physics – Transistor Integrated Circuit
CMOS Scaling Two motivations to scale down
100+ GHz Transistor Electronics: Present and Projected Capabilities , fax 2010 IEEE International Topical.
Nanometer InP Electron Devices for VLSI and THz Applications
EXAMPLE 6.1 OBJECTIVE Fp = 0.288 V
III-V HBT and (MOS) HEMT scaling
Limitations of Digital Computation William Trapanese Richard Wong.
Investigation of Performance Limits of Germanium DG-MOSFET Tony Low 1, Y. T. Hou 1, M. F. Li 1,2, Chunxiang Zhu 1, Albert Chin 3, G. Samudra 1, L. Chan.
Grace Xing---EE30357 (Semiconductors II: Devices) 1 EE 30357: Semiconductors II: Devices Lecture Note #19 (02/27/09) MOS Field Effect Transistors Grace.
Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
Ultimate Device Scaling: Intrinsic Performance Comparisons of Carbon- based, InGaAs, and Si Field-effect Transistors for 5 nm Gate Length Mathieu Luisier.
University of California Santa Barbara Yingda Dong Characterization of Contact Resistivity on InAs/GaSb Interface Y. Dong, D. Scott, A.C. Gossard and M.J.
THz Transistors, sub-mm-wave ICs, mm-wave Systems , fax 20th Annual Workshop on Interconnections within High.
1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS.
Special Issues on Nanodevices1 Special Topics in Nanodevices 3 rd Lecture: Nanowire MOSFETs Byung-Gook Park.
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Device Research Conference, 2005 Zach Griffith and Mark Rodwell Department of Electrical and Computer Engineering University of California, Santa Barbara,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
Frequency Limits of InP-based Integrated Circuits , fax Collaborators (III-V MOS) A. Gossard, S. Stemmer,
Technology Development for InGaAs/InP-channel MOSFETs
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
Short-channel Effects in MOS transistors
Indium Phosphide and Related Material Conference 2006 Zach Griffith and Mark J.W. Rodwell Department of Electrical and Computer Engineering University.
Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at.
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
THz Bipolar Transistor Circuits: Technical Feasibility, Technology Development, Integrated Circuit Results ,
III-V MOS: Planar and Fin Technologies 2014 MRS Spring Meeting, April 23, San Francisco. M.J.W. Rodwell, UCSB III-V MOS: S. Lee, C.-Y. Huang, D. Elias,
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
Field Effect Transistor (FET)
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
Fatemeh (Samira) Soltani University of Victoria June 11 th
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Tunnel FETs Peng Wu Mar 30, 2017.
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Lower Limits To Specific Contact Resistivity
Device Research Conference, June 19, 2012
by Alexander Glavtchev
Contact Resistance Modeling in HEMT Devices
High Transconductance Surface Channel In0. 53Ga0
6.3.3 Short Channel Effects When the channel length is small (less than 1m), high field effect must be considered. For Si, a better approximation of field-dependent.
Nanowire Gate-All-Around (GAA) FETs
Optional Reading: Pierret 4; Hu 3
Herb's Electron Devices
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Beyond Si MOSFETs Part 1.
Presentation transcript:

2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana III-V FET Channel Designs for High Current Densities and Thin Inversion Layers Mark Rodwell University of California, Santa Barbara Coauthors: W. Frensley: University of Texas, Dallas S. Steiger, S. Lee, Y. Tan, G. Hegde, G. Klimek Network for Computational Nanotechnology, Purdue University E. Chagarov, L. Wang, P. Asbeck, A. Kummel, University of California, San Diego T. Boykin University of Alabama, Huntsville J. N. Schulman The Aerospace Corporation, El Segundo, CA. Acknowledgements: Herb Kroemer (UCSB), Bobby Brar (Teledyne) Art Gossard (UCSB), John Albrecht (DARPA) rodwell@ece.ucsb.edu 805-893-3244, 805-893-5705 fax

Thin, high current density III-V FET channels InGaAs, InAs FETs THz & VLSI need high current low m*→ high velocities FET scaling for speed requires increased charge density low m* →low charge density Density of states bottleneck (Solomon & Laux IEDM 2001) → For < 0.6 nm EOT, silicon beats III-Vs Open the bottle ! low transport mass → high vcarrier multiple valleys or anistropic valleys → high DOS Use the L valleys.

Goal: double transistor bandwidth when used in any circuit → reduce 2:1 all capacitances and all transport delays → keep constant all resistances, voltages, currents Simple FET Scaling gate-source, gate-drain fringing capacitances: 0.15-0.25 fF/mm must increase gate capacitance/area must reduce gate length

FET Scaling Laws laws in constant-voltage limit: FET parameter change Changes required to double device / circuit bandwidth. laws in constant-voltage limit: FET parameter change gate length decrease 2:1 current density (mA/mm), gm (mS/mm) increase 2:1 channel 2DEG electron density electron mass in transport direction constant gate-channel capacitance density dielectric equivalent thickness channel thickness channel density of states source & drain contact resistivities decrease 4:1 Current densities should double Charge densities must double

Semiconductor Capacitances Must Also Scale

Calculating Current: Ballistic Limit Do we get highest current with high or low mass ?

Drive current versus mass, # valleys, and EOT InGaAs MOSFETs: superior Id to Si at large EOT. InGaAs MOSFETs: inferior Id to Si at small EOT. Solomon / Laux Density-of-States-Bottleneck → III-V loses to Si.

Transit delay versus mass, # valleys, and EOT Low m* gives lowest transit time, lowest Cgs at any EOT.

Low effective mass also impairs vertical scaling Shallow electron distribution needed for high Id, high gm / Gds ratio, low drain-induced barrier lowering. Energy of Lth well state For thin wells, only 1st state can be populated. For very thin wells, 1st state approaches L-valley. Only one vertical state in well. Minimum ~ 3 nm well thickness. → Hard to scale below 10-16 nm Lg.

III-V Band Properties, normal {100} Wafer

Consider instead: valleys in {111} Wafer

Valley in {111} wafer: with quantization in thin wells

{111} G-L FET: Candidate Channel Materials

Standard III-V FET: G valley in [100] orientation 3 nm GaAs well AlSb barriers G=0 eV L=177 meV X[100]= 264 meV X[010] = 337 meV

1st Approach: Use both G and L valleys in [111] 2.3 nm GaAs well AlSb barriers [111] orientation G= 41 meV L[111] (1)= 0 meV L[111] (2)= 84 meV L[111] , etc. =175 meV X=288 meV

Combined G-L wells in {111} orientation vs. Si combined (G -L) transport 2 nm GaAs G /L well→ g =2, m*/m0=0.07 4 nm GaSb G /L well→ mG*/m0=0.039, mL,t*/m0=0.1

2nd Approach: Use L valleys in Stacked Wells Three 0.66 nm GaAs wells 0.66 nm AlSb barriers [111] orientation L[111](1) = 0 meV L[111](2)= 61 meV L[111](3)= 99 meV G=338 meV L[111], etc =232 meV X=284 meV

Increase in Cdos with 2 and 3 wells

3 High Current Density (111) GaAs/AlSb Designs

Nonparabolic bands reduce bound state energies Concerns Nonparabolic bands reduce bound state energies Failure of effective mass approximation:1-2 nm wells 1-2 monolayer fluctuations in growth → scattering→ collapse in mobility

Purdue Confirmation

Steiger, Klimeck, Boykin Ryu, Lee, Hegde, Tan Purdue Confirmation

1-D FET array = 2-D FET with high transverse mass 1-D Array FET Weak coupling → narrow transverse-mode energy distribution→ high density of states

3rd Approach: High Current Density L-Valley MQW FINFETs

4th Approach: {110} Orientation→ Anisotropic Bands transport

Anisotropic bands, e.g. {110} Transport in {110} oriented L valleys

THz FET scaling: with & without increased DOS Gate length nm 50 35 25 18 13 9 Gate barrier EOT 1.2 0.83 0.58 0.41 0.29 0.21 well thickness 8.0 5.7 4.0 2.8 2.0 1.4 S/D resistance W-mm 210 150 100 74 53 37 effective mass *m0 0.05 0.08 # band minima canonical fixed DOS stepped # 1 2 4 1 3

Scaled FET performance: fixed vs. increasing DOS ft fmax SCFL divider speed mA/mm→ VLSI metric Increased density of states needed for high drive current, fast logic @ 16, 11, 8 nm nodes

10 nm / 3 THz III-V FETs: Challenges & Solutions gate dielectric: decrease EOT 2:1 To double the bandwidth: channel: keep same velocity, but thin channel 2:1 increase density of states 2:1 S/D access regions: decrease resistivity 2:1 S/D regrowth Wistey et al Singisetti et al

(end)

Purdue Confirmation

MOSFET Scaling Laws

2.0 nm GaAs well, AlAs barriers, on {111} GaAs

GaSb well, AlSb barriers, on {110} GaSb