Universitat de Barcelona Università di Roma 'La Sapienza' 28-06-2002 Front End Electronics for the SPD of LHCb Electronics in Experimental High Energy.

Slides:



Advertisements
Similar presentations
Electronics for large LAr TPC’s F. Pietropaolo (ICARUS Collaboration) CRYODET Workshop LNGS, March 2006.
Advertisements

6 Mar 2002Readout electronics1 Back to the drawing board Paul Dauncey Imperial College Outline: Real system New VFE chip A simple system Some questions.
An SiPM Based Readout for the sPHENIX Calorimeters Eric J. Mannel IEEE NSS/MIC October 30, 2013.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
Ph. Farthouat CERN ELEC 2002 ADC 1 Analog to Digital Conversion  Introduction  Main characteristics –Resolution –Dynamic range –Bandwidth –Conversion.
SPD spill-over and the subtractor Míriam Calvo 23 June 2010.
Status of LAV FEE electronics G. Corradi, C. Paglia, D. Tagnani & M. Raggi, T. Spadaro, P. Valente.
1 SciFi electronics meeting – CERN– June 20 th 2011 Some ideas about a FE for a SciFi tracker based on SiPM A. Comerma, D. Gascón Universitat de Barcelona.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
POSTER TEMPLATES BY: The ATLAS Tile Calorimeter (TileCal) at the LHC is used to measure the hadrons produced with polar angles.
R&D on pixel sensors at ILC ILC Workshop - November 2006 – Valencia.
Preliminary Design of Calorimeter Electronics Shudi Gu June 2002.
The CMS Level-1 Trigger System Dave Newbold, University of Bristol On behalf of the CMS collaboration.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
PMF: front end board for the ATLAS Luminometer ALFA TWEPP 2008 – 19 th September 2008 Parallel Session B6 – Programmable logic, boards, crates and systems.
Readout ASIC for SiPM detector of the CTA new generation camera (ALPS) N.Fouque, R. Hermel, F. Mehrez, Sylvie Rosier-Lees LAPP (Laboratoire d’Annecy le.
Preliminary measurements for the 8 channel prototype of SPD discriminator ASIC I.The 8 channel prototype. II.Status of the test. III.Noise. IV.Gain. V.Test.
K.C.RAVINDRAN,GRAPES-3 EXPERIMENT,OOTY 1 Development of fast electronics for the GRAPES-3 experiment at Ooty K.C. RAVINDRAN On Behalf of GRAPES-3 Collaboration.
1 ALICE T0 detector W.H.Trzaska (on behalf of T0 Group) LHCC Comprehensive Review, March 2003.
September 8-14, th Workshop on Electronics for LHC1 Channel Control ASIC for the CMS Hadron Calorimeter Front End Readout Module Ray Yarema, Alan.
Large area photodetection for Water Cerenkov detectors PMm 2 proposal: Front End Electronics MAROC ASIC Pierre BARRILLON, Sylvie BLIN, Jean-Eric CAMPAGNE,
ASIC development foreseen at IHEP/ORSAY C. de La Taille.
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Update on final LAV front-end M. Raggi, T. Spadaro, P. Valente & G. Corradi, C. Paglia, D. Tagnani.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
SPD Very Front End Electronics Sonia Luengo Enginyeria i Arquitectura La Salle (EALS) Barcelona (SPAIN)
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
LHCb Calorimeter Upgrade Meeting – 10th September 2012 – CERN LHCb Calorimeter Upgrade Electronics: ASIC solution status E. Picatoste, D. Gascon Universitat.
A high speed serializer ASIC for ATLAS Liquid Argon calorimeter upgrade Tiankuan Liu On behalf of the ATLAS Liquid Argon Calorimeter Group Department of.
Production I.Yield. II.Acceptance criteria. III.Test. PS & SPD LHCb Calo PRR – March 2004 – CERN.
11 October 2002Paul Dauncey - CDR Introduction1 CDR Introduction and Overview Paul Dauncey Imperial College London.
26/May/2008Calor LHCb Preshower(PS) and Scintillating pad detector (SPD): commissioning, calibration, and monitoring Eduardo Picatoste Universitat.
Click to edit Master subtitle style Presented By Mythreyi Nethi HINP16C.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
Calorimeter upgrade meeting – LAL /Orsay – December 17 th 2009 Low noise preamplifier Upgrade of the front end electronics of the LHCb calorimeter.
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
Jornadas CPAN – 14 th October 2014 – Sevilla SiUB Electronics Instrumentation Development and ASIC Design Lluís Garrido Universitat de Barcelona.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
CSNSM SPACIROC S. Ahmad, P. Barrillon, S. Blin, S. Dagoret, F. Dulucq, C. de La Taille IN2P3-OMEGA LAL Orsay, France Y. Kawasaki - RIKEN,Japan I. Hirokazu.
Study of the MPPC for the GLD Calorimeter Readout Satoru Uozumi (Shinshu University) for the GLD Calorimeter Group Kobe Introduction Performance.
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
Proposal for the after-pulse effect suppression  Observation of pulses and after-pulses  Shape measurement  Algorithm  Results  Efficiencies for after-pulse.
SKIROC status Calice meeting – Kobe – 10/05/2007.
 13 Readout Electronics A First Look 28-Jan-2004.
DAQ ACQUISITION FOR THE dE/dX DETECTOR
KLOE II Inner Tracker FEE
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
CTA-LST meeting February 2015
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
A First Look J. Pilcher 12-Mar-2004
EUDET – LPC- Clermont VFE Electronics
LHCb calorimeter main features
Status of n-XYTER read-out chain at GSI
SKIROC status Calice meeting – Kobe – 10/05/2007.
Overview of the LHCb Calorimeter Electronics … focus in the ECAL/HCAL
Signal processing for High Granularity Calorimeter
The ATLAS LAr. Calibration board K. Jakobs, U. Schaefer, D. Schroff
Front-end Electronics for the LHCb Preshower Rémi CORNAT, Gérard BOHNER, Olivier DESCHAMPS, Jacques LECOQ, Pascal PERRET LPC Clermont-Ferrand.
How can we study the magnetic distortion effect?
Presentation transcript:

Universitat de Barcelona Università di Roma 'La Sapienza' Front End Electronics for the SPD of LHCb Electronics in Experimental High Energy Physics Xavier Vilasís-Cardona Enginyeria i Arquitectura La Salle URL - Barcelona

The collaboration in Barcelona Universitat de Barcelona Lluis Garrido Ricardo Graciani David Gascón Ernest Aguiló Miriam Calvo Sergio Gómez Sebastià Bota Atilà Herms Angel Diéguez Xavier Cano Enginyeria i Arquitectura La Salle Rafael Ballabriga Sonia Luengo Mar Roselló Jordi Riera Xvc

Outlook What is LHC ? What is LHCb ? The SPD Photomultipliers Very Front End Electronics The ASIC Front End Electronics

LHC : the future collider at CERN Proton-Proton Starting 2007 Find the Higgs Find new physics 4 detectors Alice Atlas CMS LHCb

LHC : some data Energy at collision: 7 TeV (1700 TeV for ions) Dipole field at 7 TeV: 8.3 T Bunch spacing: 7.5 m Bunch separation: ns Particles per bunch: 10^11 Current: 0.56 A Luminosity: 10^34 cm^2 s Energy per beam up to 0.35 GJ Stored magnetic energy up to 1.29 GJ per sector TOTAL STORED ENERGY = 11 GJ

LHCb A single-arm spectrometer covering  min ~15 mrad (beam pipe and radiation)  max ~300 mrad (cost optimisation) Precise measurements of CP violation B mesons CKM matrix elements

LHCb : what is CP violation ? CPT is an exact symmetry C charge conjugation P parity T time reversal CP is almost exact CP violation explains matter-antimatter asymmetry

LHCb : the trigger LHCb = 1000k channels : too much data The multi-level trigger chain Logging rate 200 Hz (20 MB/s) 200 TB/year All LHC experiments: 5-8 PB/year Input rateLatencyB/s Level 040 MHz3.2 μs1 TB/s Level 11 MHz256 μs4 GB/s Level 240 kHz10 ms Level 35 kHz200 ms

SPD Scintillator Pad Detector In front of the calorimeter Discriminates photons from electrons at level 0 of trigger spdpsecal spdpsecal e

SPD structure 6000 Scintillator Pads Helicoidal WLS optic fibers 64 channel PMT (Hamamatsu) 1 bit per channel at 40 MHz Synchronisation issues Send bit to PreShower Compare to a variable threshold Radiation hard

SPD signal shape Few photoelectrons Irregular signal shape Extended over 25 ns Non-uniform PMT gain

SPD electronics design

ASIC : why an ASIC ?  6000 channels : minimal area /ch  Processing speed 40 MHz  Power consumption < 2 W / 64 channels  Analog Processing + Digital Control  Signal range. 0 to 5 MIP (0 to 650 mV)  Electronics resolution 5% of 1 MIP  Dynamic range: 40 dB (7 bits)

ASIC Structure

ASIC characteristics  Programmable  Thresholds per sub-channel  Subtraction: from 0% up to 40% of the signal  T0: done externally with a delay unit (LAL design)  0.8 m AMS BiCMOS Technology  Dual channel  Fully differential  Working at 3.3V  SEU and SEL protection  Triple voting  Guard rings

Review of ASIC runs RUN1 (Sep 2000) Test separate blocs 1 full channel RUN2 (Jun 2001) 4 full channels ECL vs CMOS output RUN3 (Jan 2002) New tunnable substractor 1 full channel with digital control On-chip DAC to program thresholds RUN4 (Sep 2002) 1 Complete processing channel Separate blocs + digital control Works at 3.3 V to reduce power consumption Fully differential preamplifier added before the integration stage to meet PMT DC current limit requirements

ASIC : RUN 4 layout

ASIC : integrator

ASIC : Track and Hold

ASIC : substractor

ASIC : latched comparator

 (): = mV  io = 70 mV r.m.s.  Offset (Output Zero Error): = mV  io = 70 mV r.m.s.  = (for a typical input pulse)  io = r.m.s. (0,55%)  Gain: = (for a typical input pulse)  io = r.m.s. (0,55%)  = 5.5 ns (for 1 V output)  Treset = 5.5 ns (for 1 V output)  E no < 2 mV r.m.s (Using scope, C.F. 6)  Noise E no < 2 mV r.m.s (Using scope, C.F. 6) E no < 1 mV r.m.s (Discriminator sweep of thresholds) E no < 1 mV r.m.s (Discriminator sweep of thresholds) ASIC : integrator measurements 10 circuits

ASIC : integrator linearity

ASIC : programmable substractor

VFE Board description  100 boards  7x12 cm  Multiplexed LVDS

Very Front End Board Test beam boards Sep 2001: RUN 2, 4 full channels/ 4-layer board ECL vs CMOS output Clock signal distribution Power Supply distribution June 2002: RUN 2, 4 full channels / 4-layer board Improvements in board design Signals distribution June 2002: RUN 3, 1 full channel and digital control/ 6-layer board Digital signal distribution vs analog signal distribution Noise effect vs number of layers

Front End Board Control Unit : Bus Bridge Programmable Delays 1 Control Unit every 4 VFE Boards 5 Control Units in a Front End Board 6 Front End Boards

Conclusions