DEPFET Active Pixel Sensors (for the ILC)

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

H.-G. Moser Max-Planck-Institut für Physik MPI Semiconductor Laboratory (Halbleiterlabor: HLL) Common project of the: Max-Planck-Institut fuer Physik (Werner.
H.-G. Moser Max-Planck-Institut fuer Physik 2 nd open meeting July 4, 2008 Report on PXD Session.
2nd Open Meeting of the SuperKEKB Collaboration, KEK, March 2009 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Sensor R&D and Prototyping - Status -
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
SuperKEKB 3nd open meeting, July Hans-Günther Moser MPI für Physik PXD Summary Other talks in software, SVD and DAQ sessions.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
FEE 2006, Perugia, Marcel Trimpl, University of Bonn VIth Workshop on Front End Electronics Perugia, Mai 2006 M.Trimpl DEPFET – collaboration:
The Belle II DEPFET Pixel Detector
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
The ultralight DEPFET Pixel Detector of the Belle II Experiment Florian Lütticke On behalf of the DEPFET Collaboration th.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Daniel EsperanteIFIC – 13 Jun 2012 Electrónica para nuevos detectores de Belle-II e ILC.
Spanish Linear Collider Meeting, Valencia, December 2012 Ladislav Andricek, MPI für Physik, HLL 1 DEPFET APS for future collider applications -Status and.
Thinning and Interconnection DEPFET Meeting, Valencia, Sept Ladislav Andricek, MPI für Physik, HLL  update on thinning  samples for thermal mock-ups.
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Infinipix DEPFETs (for the ATHENA project) Seeon, May 2014 Alexander Bähr MPE 1 Alexander Bähr Max-Planck-Institute f. extraterrestr. Physics.
Hybrid Boards for PXD6 5th International Workshop on DEPFET Detectors and Applications Sept Oct Christian Koffmane 1,2 1 Max-Planck-Institut.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
H.-G. Moser Max-Planck-Institut für Physik Future Vertex Detectors in HEP Projects: LHC (upgrade 2018+) Belle 2 (upgrade 2018+) ILC/CLIC (2020+)
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
6 th Belle PAC, KEK, February 26 and PXD - EVO, 5/March/2012 Ladislav Andricek, MPI für Physik, HLL 1
On-Module Interconnection and CNM Projects DEPFET Meeting, Bonn, February Ladislav Andricek, MPI für Physik, HLL  update on thinning  samples.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
PXD ASIC Review, July 2015 Ladislav Andricek, MPG Halbleiterlabor Belle II PXD ASIC Review, the 2 nd …….. 1.
H.-G. Moser Max-Planck-Institut fuer Physik DEPFET Meeting Heidelberg Sept DEPFET Geometry for SuperBelle Sensor Geometry Pixel Pitch Constant/variable.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
PXD ASIC Review, Oct Ladislav Andricek, MPG Halbleiterlabor Belle II PXD Overview (An attempt to describe the) Interfaces between ASICs and the Experiment.
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
Testing PXD6 - testing plans
10-12 April 2013, INFN-LNF, Frascati, Italy
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Thinning and Plans for SuperBelle
The DEPFET for the ILC Vertex Detector
The CSOI approach for integrated micro channels
CMOS pixel sensors & PLUME operation principles
The SOI Issue – Material for PXD9
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
Integration and alignment of ATLAS SCT
The Belle II Vertex Pixel Detector (PXD)
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
FPCCD Vertex Detector for ILC
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
FPCCD Vertex Detector for ILC
Status of CCD Vertex Detector R&D for GLC
R&D of CMOS pixel Shandong University
Presentation transcript:

DEPFET Active Pixel Sensors (for the ILC) 7/3/2018 DEPFET Active Pixel Sensors (for the ILC) DEPFET Principle Single Pixel characteristics An Array of DEPFETS Thin DEPFETs for Belle II and ILC The DEPFET Collaboration … 15 Institutes, and still growing Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

Depleted P-channel FET 7/3/2018 DEPFET Principle J. Kemmer & G. Lutz, 1987 Drain Source Gate Depleted P-channel FET fully depleted sensitive volume, mip: ~ 80 e-h pairs/µm internal amplification Charge collection in "off" state, read out on demand Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

TeSCA 3D Simulation by K.Gärtner, WIAS, Berlin 7/3/2018 DEPFET Principle drain clear source int. gate 50 micron dicke, 1600 e-h paare TeSCA 3D Simulation by K.Gärtner, WIAS, Berlin fully depleted sensitive volume, mip: ~ 80 e-h pairs/µm internal amplification Charge collection in "off" state, read out on demand Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

7/3/2018 DEPFET Principle fully depleted sensitive volume, mip: ~ 80 e-h pairs/µm internal amplification Charge collection in "off" state, read out on demand Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

Internal Amplification 7/3/2018 Internal Amplification Photon events Clear step time I_Drain gq (pA/e-) Drain current ID (µA) (L: nominal gate length) (Ideal transistor theory - neglecting short channel effects) Reduction necessary to improve radiation hardness and output IV curves Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

55Fe Spectrum (single pixel) 7/3/2018 55Fe Spectrum (single pixel) 912 krad 60Co Vthresh≈-4.0V, Vgate=-6.0V Idrain=40 μA time cont. shaping =10 μs Noise ENC=3.5 e- (rms) at T>23 degC non-irradiated Vthresh≈-0.2V, Vgate=-2V Idrain=41 μA time cont. shaping =10 μs D1 G1 Cl S Cl G2 Noise ENC=1.6 e- (rms) at T>23 degC D2 Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

DEPFET Types and Applications 7/3/2018 DEPFET Types and Applications Particle tracking  vertex detector at Belle II and ILC pixel size: 20µm…75µm r/o time per row: 25ns-100ns Noise: ≈100 el ENC thin detectors: 50µm…75µm  still large signal: 40nA/µm for mip X-ray imaging spectroscopy  IXO (Athena) pixel size: 100µm r/o time per row: 2.5 µs Noise: ≈4 el ENC fully depleted thick detectors better  large QE for higher E X-ray (imaging) spectroscopy  BepiColombo and XFEL pixel size: 100s of µm For XFEL: DEPFET  DSSC DEPFET Sensor with Signal Compression Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

An Array of DEPFETs – r/o ASICs Hybrid-pixel-like approach one amp. (&ADC) per pixel, external common clear more challenging interconnection (bump bonding, vertical integration ..) high power consumption fast! frame rate comparable with hybrid pixels  European XFEL (~5MHz frame rate) Row wise read-out ("rolling shutter") select row with external gate, read current, clear DEPFET, read current again two different auxiliary ASICs needed, but no interconnect in sensitive area r/o needs time….. only one row active  low power consumption  Belle II, ILC, IXO, Bepi Columbo Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL

ILC Prototype System DEPFET Matrix Gate Switcher 7/3/2018 ILC Prototype System DEPFET Matrix 64x128 pixels, various pixel types Gate Switcher Clear Switcher 2 analog MUX outputs with 64 channels each Can switch up to 25 V 0.8µm AMS HV technology Current Readout CUROII current based 128 channel readout chip 50 MHz band width in the f/e On-chip pedestal subtraction (CDS) Real time hit finding and zero suppression 0.25µm CMOS technology (radhard design) Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

Evaluation of ILC Test Matrices: Beam Tests at CERN H6 7/3/2018 Evaluation of ILC Test Matrices: Beam Tests at CERN H6 5 telescope planes with “standard” DEPFET matrices, 450 µm thick 24x32 µm2 pixel size 2008: 64x128 pixels 2009: new readout board for 64x256 matrices one device under test (DUT) on the rotation stage 2008: 64x128 pixels, 24x24 µm2 2009: 64x256 pixels 20x20 µm2 with shorter gate length capacitively coupled clear gate (…better clear) all devices characterized in the lab before test beam (laser, source..) Test beam program: high statistics run for in-pixel studies angular scans “clear” parameter and depletion voltage scans Beam energy scan … Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

Data Analysis finished 2010, with a world record .. 7/3/2018 Data Analysis finished 2010, with a world record .. 120 GeV pions, 90˚, 20 x 20 µm2 pixel DEPFET Gate L=5 µm  higher gq ≈ 650 pA/e- S/N ≈ 200 ≈ 1 µm resolution! Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

Towards Thin Sensors Preliminary Preliminary Test Beam Data Particle gun (single event) EvtGen (physics event) Detector geometry Material E-Field in Silicon Lorentz angle in B-Field A/D Conv. and clustering Marlin tracking PXD+SVD+CDC Physics channels Test Beam Data Pixel: 20x20x450 µm3  σsp≈1 µm bigger + thicker + 1.5 T Pixel: 50x50x75 µm3  σsp≈7.7 µm small + thin Pixel: 20x20x50 µm3  σsp≈3.5 µm Preliminary Preliminary Benjamin Schwenker IEEE NSS 2010, Knoxville, TN Ladislav Andricek, MPI für Physik, HLL

VXD vs. PXD (from a DEPFET point of view) -: radii: 15, 26, 37, 48, 60 mm ………………………………………………………. -: ladder length: 125mm(L0) and 250mm(L1-4) ………………………………… -: sensitive width: 11mm (L0), 15mm(L1), 22mm(L2-4) …………………….. -: number of ladders: 10/11/12/16/20  130 sensors ……………………….. -: pixel size: ≈20 µm ………………………………………………………………………. -: Row rate: ≈40 MHz ……………………………………………………………………… -: number of pixels: ≈800 Mpix ………………………………………………………… 14, 22 mm 136 mm(L0) and 169mm(L1) 12.5mm (L0, L1) 8/12  40 sensors 50x50 µm2 (L0) 50x75 µm2 (L1) ≈10 MHz ≈8 Mpix And: minimal material for both!!! Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL

Thinning Technology – All Silicon Module 7/3/2018 Thinning Technology – All Silicon Module Top Wafer Handle <100> Wafer a) oxidation and back side implant of top wafer b) wafer bonding and grinding/polishing of top wafer c) process  passivation open backside passivation d) anisotropic deep etching opens "windows" in handle wafer IEEE NSS, Dresden, October 2008 Ladislav Andricek, MPI fuer Physik, HLL Ladislav Andricek, MPI Munich

Self-supporting All-Silicon Module Belle II mechanical sample 50µm Si, unsupported Half-ladders (modules) are laser-cut Modules are supported by a monolithic silicon frame Two modules are assembled to one ladder overall length is 136 mm (inner) and 169 mm (outer) 50µm Si in Silicon frame MPP Project Review, Dec. 2010 Ladislav Andricek, MPI für Physik, HLL

Micro joint between half-ladders 7/3/2018 Micro joint between half-ladders butt-joint between two half-ladders reinforced with 3 ceramic inserts 2x300µm dead area per ladder MPP Project Review, Dec. 2010 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

Micro joint between half-ladders 7/3/2018 Micro joint between half-ladders gravity effect = Δy/2 DEPFET Meeting, Valencia, Sept. 2010 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

Micro joint between half-ladders Mechanical tests  remarkably robust!! -: Bowing: up to 1 mm sagitta (over 10 cm) -: Tension: 40 to 60 N, then the Silicon broke IEEE NSS 2010, Knoxville, TN Ladislav Andricek, MPI für Physik, HLL

Total Material Budget within the Sensitive Volume (Belle II) 7/3/2018 Total Material Budget within the Sensitive Volume (Belle II) sensitive area of the first layer ladder: 1.25x9.0 cm2 (1.5x9.0 incl. frame), 75 µm thin support frame: 0.1+0.2 cm, 420 µm Switcher-Sensor Interconnect: Gold stud bumps, one bump/connection, Φ=48 µm Cu Layer t=3 µm, 50% coverage in acceptance Switcher dimensions: 0.15x0.36 cm2 Number of Switchers: 12 (32x2 channels per chip – gate and clear) Material reduction by frame perforation: 1/3 0.19 %X0 in total Silicon contribution (0.15%) experimentally confirmed IEEE NSS 2010, Knoxville, TN Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

PXD6 Batch: Prototyping for Belle II and ILC 8 SOI wafers ( 50 µm in sensitive area) + 2 monitor wafers on standard thick material About 100 test matrices in different variations pixel sizes from 20 µm to 200 µm shorter gate length, improved clear structures, various field shapes.. Technology variations on the wafer level (plasma etching) 4 half-ladders for Belle II with the most promising design options MPP Project Review, Dec. 2010 Ladislav Andricek, MPI für Physik, HLL

PXD6 Batch: Prototyping for Belle II and ILC 9 Implantations 19 Lithographies 2 Poly-layers 2 Alu-layers sums up to 89 steps with 1-5 WD each in between: a lot of inspection steps! process control, dummy wafer production..  19 months processing time (16 after SOI pre-processing) We are now here – it’s done  (almost..) MPP Project Review, Dec. 2010 Ladislav Andricek, MPI für Physik, HLL

MPP Project Review, Dec. 2010 Ladislav Andricek, MPI für Physik, HLL

In Summary: Achievements and Status and Future 7/3/2018 In Summary: Achievements and Status and Future DEPFETs for the ILC VXD Prototype System with DEPFETs (450µm), CURO and Switcher many test beams @ CERN: S/N≈200 @ 450 µm  goal S/N ≈ 20-40 @ 50 µm sample-clear-sample 320 ns  goal 50 ns s.p. res. with 20 µm pixels: 1.0 µm @ 450 µm  goal ≈ 4 µm @ 50 µm Thinning technology established, thickness can be adjusted to the needs of the experiment (~20 µm … ~100 µm), design goal 0.11 % X0 radiation tolerance tested with single pixel structures up to 1 Mrad (static measurements up 8 Mrad) and ~1012 neq/cm2 The Future DEPFET PXD @ Belle II gave a strong push to the project!! First thin DEPFETs are now being tested (ILC and Belle II) ILC and Belle DEPFETs are very similar, Belle II as “prototype” for ILC DEPFETs Read-out system design and detector simulation is now focusing on Belle II. We need to increase our effort at in least in the field of detector simulation to stay competitive in the ILC community. Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

Backup slides follow MPP Project Review, Dec. 2010 Ladislav Andricek, MPI für Physik, HLL

ILC: The generic VXD at ILD -: radii 15, 26, 37, 48, 60 mm -: ladder length 125mm(L0) and 250mm(L1-4) -: sensitive width 11mm (L0), 15mm(L1), 22mm(L2-4) -: number of ladders: 10/11/12/16/20  130 sensors -: acceptance |cos θ| = 0.97 -: pixel pitch ≈20 µm -: number of pixels: ≈800 Mpix Minimal Material Contribution: 0.11% X0 per layer Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL

Fast Clearing Study clear efficiency for short clear pulses 7/3/2018 Fast Clearing Study clear efficiency for short clear pulses Device with common clear gate UClear-off = 3 V Complete clear in only 10-20 ns @ DVclear = 11-7 V Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich

Module Concept/Power Consumption 7/3/2018 Module Concept/Power Consumption Total power consumption of the vtx-d in the active region (TDR design, 25 mm pixel) DEPFET matrix only: 1st layer : 2 rows active, 30 μA ∙ 5V ∙ 650 ∙ 2 ∙ 8 = 1.6 W 2nd .. 5th layer: 1 row active, 30 μA ∙ 5V ∙ 1100 ∙ 1 ∙ 112 = 18.5 W Steering chips: assuming 0.15 mW for an inactive, 300 mW for an active channel 1st layer : [(4998 ∙ 0.15 mW)+(2 ∙ 300mW)] ∙ 8 = 10.8 W 2nd ..5th layer: [(6249 ∙ 0.15 mW)+(1 ∙ 300mW)] ∙ 112 = 138.6 W Σ active region ≈ 170 W % duty cycle ILC 1/200  ≈ 0.9 W sketch of a 1st layer module r/o chips (current version):2.8 mW/chn. for the whole vtx-d: ≈ 2W Spanish Future Collider Meeting, Granada, May 2011 Ladislav Andricek, MPI für Physik, HLL Ladislav Andricek, MPI Munich