CMOS Fabrication CMOS transistors are fabricated on silicon wafer

Slides:



Advertisements
Similar presentations
Processes of Fabrication
Advertisements

FABRICATION PROCESSES
Process Flow : Overhead and Cross Section Views ( Diagrams courtesy of Mr. Bryant Colwill ) Grey=Si, Blue=Silicon Dioxide, Red=Photoresist, Purple= Phosphorus.
CMOS Fabrication EMT 251.
Lecture 0: Introduction
Simplified Example of a LOCOS Fabrication Process
CMOS Process at a Glance
VLSI Design Lecture 2: Basic Fabrication Steps and Layout
Fabrication of p-n junction in Si Silicon wafer [1-0-0] Type: N Dopant: P Resistivity: Ω-cm Thickness: µm.
EE4800 CMOS Digital IC Design & Analysis
Introduction to CMOS VLSI Design Lecture 0: Introduction
Design and Implementation of VLSI Systems (EN1600) lecture04 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Sedra/Prentice.
The Physical Structure (NMOS)
Design and Implementation of VLSI Systems (EN0160) Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Sedra/Prentice Hall, Saint/McGrawHill,
Lecture #51 Lecture #5 – VLSI Design Review zPhotolithography zPatterning Silicon zProcess steps used are: yStarts with Si wafer yThermal oxidation yPhotoresist.
Introduction to CMOS VLSI Design Lecture 0: Introduction
Device Fabrication Example
VLSI Design Introduction. Outline Introduction Silicon, pn-junctions and transistors A Brief History Operation of MOS Transistors CMOS circuits Fabrication.
Introduction Integrated circuits: many transistors on one chip.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process I Dr. Shiyan Hu Office: EERC 518 Adapted and modified from Digital Integrated.
Introduction to CMOS VLSI Design
Rochester Institute of Technology - MicroE © REP/LFF 8/17/2015 Metal Gate PMOS Process EMCR201 PMOS page-1  10 Micrometer Design Rules  4 Design Layers.
Z. Feng VLSI Design 1.1 VLSI Design MOSFET Zhuo Feng.
CMOS Fabrication Details
CS/EE 6710 CMOS Processing. N-type Transistor + - i electrons Vds +Vgs S G D.
VLSI Design Lecture 2: Basic Fabrication Steps and Layout Mohammad Arjomand CE Department Sharif Univ. of Tech. Adapted with modifications from Harris’s.
Lecture 0: Introduction. CMOS VLSI Design 4th Ed. 0: Introduction2 Introduction  Integrated circuits: many transistors on one chip.  Very Large Scale.
CP-416 VLSI System Design Lecture 1-A: Introduction Engr. Waqar Ahmad UET,Taxila.
1. A clean single crystal silicon (Si) wafer which is doped n-type (ColumnV elements of the periodic table). MOS devices are typically fabricated on a,
Chapter 4 Overview of Wafer Fabrication
SEMINAR PRESENTATION ON IC FABRICATION PROCESS
Introduction to CMOS VLSI Design CMOS Fabrication and Layout Harris, 2004 Updated by Li Chen, 2010.
By: Joaquin Gabriels November 24 th,  Overview of CMOS  CMOS Fabrication Process Overview  CMOS Fabrication Process  Problems with Current CMOS.
NanoFab Trainer Nick Reeder June 28, 2012.
Introduction EE1411 Manufacturing Process. EE1412 What is a Semiconductor? Low resistivity => “conductor” High resistivity => “insulator” Intermediate.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
IC Processing. Initial Steps: Forming an active region Si 3 N 4 is etched away using an F-plasma: Si3dN4 + 12F → 3SiF 4 + 2N 2 Or removed in hot.
ISAT 436 Micro-/Nanofabrication and Applications Photolithography David J. Lawrence Spring 2004.
NMOS FABRICATION 1. Processing is carried out on a thin wafer cut from a single crystal of silicon of high purity into which the required p-impurities.
CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL DEPARTMENT OF ELECTRONICS & COMMUNICATIONS NMOS FABRICATION PROCESS - PROF. RAKESH K. JHA.
©2008 R. Gupta, UCSD COSMOS Summer 2008 Chips and Chip Making Rajesh K. Gupta Computer Science and Engineering University of California, San Diego.
Dynamic Behavior of MOS Transistor. The Gate Capacitance t ox n + n + Cross section L Gate oxide x d x d L d Polysilicon gate Top view Gate-bulk overlap.
CMOS VLSI Design Introduction
CMOS VLSI Fabrication.
CMOS FABRICATION.
Introduction to CMOS VLSI Design Lecture 1: History & Layout Salman Zaffar Iqra University, Karachi Campus Spring 2012 Slides from D. Harris, Harvey Mudd.
2007/11/20 Paul C.-P. Chao Optoelectronic System and Control Lab., EE, NCTU P1 Copyright 2015 by Paul Chao, NCTU VLSI Lecture 0: Introduction Paul C.–P.
Out Line of Discussion on VLSI Design Basics
CMOS Fabrication EMT 251.
CMOS VLSI Design Lecture 2: Fabrication & Layout
1. Introduction. Diseño de Circuitos Digitales para Comunicaciones Introduction Integrated circuits: many transistors on one chip. Very Large Scale Integration.
VLSI Design Introduction. Outline Introduction Silicon, pn-junctions and transistors A Brief History Operation of MOS Transistors CMOS circuits Fabrication.
IC Manufactured Done by: Engineer Ahmad Haitham.
Introduction to CMOS VLSI Design
Subject Name: Fundamentals Of CMOS VLSI Subject Code: 10EC56
Manufacturing Process I
CMOS Process Flow.
Chapter 1 & Chapter 3.
VLSI System Design LEC3.1 CMOS FABRICATION REVIEW
Silicon Wafer cm (5’’- 8’’) mm
_________ ______ _________ (with extended comments)
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Manufacturing Process I
VLSI Design Introduction
Manufacturing Process I
CSE 87 Fall 2007 Chips and Chip Making
Lecture 1: Introduction
Presentation transcript:

CMOS Fabrication CMOS transistors are fabricated on silicon wafer Lithography process similar to printing press On each step, different materials are deposited or etched Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section Typically use p-type substrate for nMOS transistors Requires n-well for body of pMOS transistors

Well and Substrate Taps Substrate must be tied to GND and n-well to VDD Metal to lightly-doped semiconductor forms poor connection called Shottky Diode Use heavily doped well and substrate contacts / taps

Inverter Mask Set Transistors and wires are defined by masks Cross-section taken along dashed line

Detailed Mask Views Six masks n-well Polysilicon n+ diffusion p+ diffusion Contact Metal

Fabrication Steps Start with blank wafer Build inverter from the bottom up First step will be to form the n-well Cover wafer with protective layer of SiO2 (oxide) Remove layer where n-well should be built Implant or diffuse n dopants into exposed wafer Strip off SiO2

Oxidation Grow SiO2 on top of Si wafer 900 – 1200 C with H2O or O2 in oxidation furnace

Photoresist Spin on photoresist Photoresist is a light-sensitive organic polymer Softens where exposed to light

Lithography Expose photoresist through n-well mask Strip off exposed photoresist

Etch Etch oxide with hydrofluoric acid (HF) Seeps through skin and eats bone; nasty stuff!!! Only attacks oxide where resist has been exposed

Strip Photoresist Strip off remaining photoresist Use mixture of acids called piranah etch Necessary so resist doesn’t melt in next step

n-well n-well is formed with diffusion or ion implantation Diffusion Place wafer in furnace with arsenic gas Heat until As atoms diffuse into exposed Si Ion Implanatation Blast wafer with beam of As ions Ions blocked by SiO2, only enter exposed Si

Strip Oxide Strip off the remaining oxide using HF Back to bare wafer with n-well Subsequent steps involve similar series of steps

Polysilicon Deposit very thin layer of gate oxide Chemical Vapor Deposition (CVD) of silicon layer Place wafer in furnace with Silane gas (SiH4) Forms many small crystals called polysilicon Heavily doped to be good conductor

Polysilicon Patterning Use same lithography process to pattern polysilicon

Self-Aligned Process Use oxide and masking to expose where n+ dopants should be diffused or implanted N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion Pattern oxide and form n+ regions Self-aligned process where gate blocks diffusion Polysilicon is better than metal for self-aligned gates because it doesn’t melt during later processing

N-diffusion cont. Historically dopants were diffused Usually ion implantation today But regions are still called diffusion

N-diffusion cont. Strip off oxide to complete patterning step

P-Diffusion Similar set of steps form p+ diffusion regions for pMOS source and drain and substrate contact

Contacts Now we need to wire together the devices Cover chip with thick field oxide Etch oxide where contact cuts are needed

Metalization Sputter on aluminum over whole wafer Pattern to remove excess metal, leaving wires