Presentation is loading. Please wait.

Presentation is loading. Please wait.

CSE 87 Fall 2007 Chips and Chip Making

Similar presentations


Presentation on theme: "CSE 87 Fall 2007 Chips and Chip Making"— Presentation transcript:

1 CSE 87 Fall 2007 Chips and Chip Making
Rajesh K. Gupta Computer Science and Engineering University of California, San Diego. 2007 R. Gupta, Computing and Chips

2 Outline The Chip The Chip Making Process References
“How chips are made” – Intel “Microelectronics 101” – IBM 2007 R. Gupta, Computing and Chips

3 The Chip: A Packaged Part
Quad Flat Pack (QFP) Ball Grid Array (BGA) 2007 R. Gupta, Computing and Chips

4 The Die Under a Microscope
Intel 4004 (‘71) Intel 8080 Intel 8085 Intel 8286 Intel 8486 2007 R. Gupta, Computing and Chips

5 A Gate Layout Defines a set of “masking layers” for printing purposes.
2007 R. Gupta, Computing and Chips

6 The Ingredients Silicon Wafers cut from an ingot of pure silicon.
Chemicals and gases are used throughout the chip-making process. Metals, such as aluminum and copper, are used to conduct the electricity throughout the microprocessor. Gold is also used to connect the actual chip to its package. Ultraviolet (UV) Light has very short wavelengths and is just beyond the violet end of the visible spectrum. Masks used in the chip-making process are like stencils. When used with UV light, masks create the various circuit patterns on each layer of the chip. 2007 R. Gupta, Computing and Chips [Courtesy Intel. Adapted from

7 Building Chip Start with a disk of silicon called wafer
75 mm to 300 mm in diameter, < 1 mm thick cut from ingots of single-crystal silicon pulled from a crucible of pure molten polycrystalline silicon using a seed crystal Different processing steps and techniques Introduce dopants Oxidation Masking Polysilicon 2007 R. Gupta, Computing and Chips

8 Introduce Dopants Pure silicon is a semiconductor
bulk electrical resistance in between that of a conductor and insulator Conductivity of silicon can be varied several orders of magnitude by introducing impurity atoms called dopants acceptors: accept electrons to leave holes in silicon lead to p-type silicon (e.g. Boron) donors: provide electrons to silicon lead to n-type silicon (e.g. Arsenic, Phosphorous) 2007 R. Gupta, Computing and Chips

9 Introduce Dopants (2) Ion Implantation Deposition through diffusion
evaporating dopant material into the silicon surface thermal cycle: impurities diffuse deeper into material Ion Implantation silicon surface subjected to highly energized donor or acceptor atoms atoms impinge silicon surface, and drive below it to form regions of varying concentrations 2007 R. Gupta, Computing and Chips Ion Implantation

10 Oxidation Method 1: Heating silicon wafers in an oxidizing atmosphere (O2 or H2O) Consumes Si Grows equally in both vertical directions Method 2: Deposition Deposited on top of existing layers 2007 R. Gupta, Computing and Chips

11 Masking Masks act as barrier against e.g. Commonly used mask materials
ion implantation dopant deposition before diffusion (dopants do not reach surface) oxidation (O2 or H2O does not reach surface) Commonly used mask materials photoresist polysilicon silicon dioxide (SiO2) silicon nitride (SiN) 2007 R. Gupta, Computing and Chips

12 Example: oxide mask bare silicon wafer oxidize wafer
deposit layer of photoresist expose the photoresist selectively to UV light The drawn mask pattern determines which part is exposed Resist polymerizes where exposed 2007 R. Gupta, Computing and Chips

13 unexposed resist is removed with solvent: negative resist
(positive resist: exposed resist is removed) exposed oxide is etched photoresist is washed off the oxide can now be used as a masking layer for ion implantation 2007 R. Gupta, Computing and Chips

14 The Printing Challenge
UV lithography: line width limited by diffraction and alignment tolerances, but tricks are used Electron beam lithography has emerged: directly from digital data, but more costly and slow 2007 R. Gupta, Computing and Chips

15 Polysilicon Silicon also comes in a polycrystalline form Used as
called polysilicon, or just poly high resistance normally doped at the same time as source/drain regions Used as an interconnect in silicon ICs gate electrode in MOS transistors most important: acts as a mask to allow precise definition of source and drain extension under gate minimum gate to source/drain overlap improves circuit performance (why?) called self-aligned process 2007 R. Gupta, Computing and Chips

16 The Design Process 2007 R. Gupta, Computing and Chips

17 Packaging Wafer Single die From http://www.amd.com
2007 R. Gupta, Computing and Chips From

18 Next Class Computers and Radios And chips in between
2007 R. Gupta, Computing and Chips


Download ppt "CSE 87 Fall 2007 Chips and Chip Making"

Similar presentations


Ads by Google