HARDROC HAdronic Rpc ReadOut Chip

Slides:



Advertisements
Similar presentations
Jeudi 19 février 2009 Status of SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin-Chassard, Christophe de La.
Advertisements

SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
C. Combaret TILC april m2 GRPC Acquisition System C. Combaret, IPN Lyon For the EU DHCAL collaboration
08/10/2007Julie Prast, LAPP, Annecy1 The DHCAL DIF and the DIF Task Force Julie Prast, LAPP, Annecy.
EUDET FEE status C. de LA TAILLE. EUDET annual meeting 6 oct 08 cdlt : FEE statrus 2 EUDET module FEE : main issues 2 nd generation ASICs –Self triggering.
Large area photodetection for Water Cerenkov detectors PMm 2 proposal: Front End Electronics MAROC ASIC Pierre BARRILLON, Sylvie BLIN, Jean-Eric CAMPAGNE,
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay on behalf of the CALICE and EUDET collaborations
June 1, 2007V.Ammosov, LCWS2007/ILC2007 DESY Hamburg 1 Status of gaseous DHCAL R&D in Europe Vladimir Ammosov, IHEP – Protvino IPNL,LAL, LAPP, LLR, SACLAY.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Organization for Micro-Electronics desiGn and Applications HARDROC 3 for SDHCAL OMEGA microelectronics group Ecole Polytechnique CNRS/IN2P3, Palaiseau.
EUDET JRA3 Front-End electronics in 2007 C. de La Taille IN2P3/LAL Orsay HaRDROCSKIROCSPIROC.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
Second generation Front-End ASICs for CALICE LCWS07 Hamburg C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration HaRDROCSKIROCSPIROC.
European DHCAL development European DHCAL development CIEMAT,IPNL,LAL, LAPP,LLR, PROTVINO, SACLAY CIEMAT,IPNL,LAL, LAPP,LLR, PROTVINO, SACLAY Status :
Julie Prast, Calice Electronics Meeting at LAL, June 2008 Status of the DHCAL DIF Detector InterFace Board Sébastien Cap, Julie Prast, Guillaume Vouters.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
Front-End electronics for Future Linear Collider W-Si calorimeter physics prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
HARDROC2: First measurements. HR2 status, Hambourg 12 dec 08, NSM 2 HARDROC2 4.3mm 4.5 mm Ceramic: 4.3 mm Plastic (Thin QFP): 1.4 mm 28 mm Hardroc2 submission:
DHCAL Jan Blaha R&D is in framework of the CALICE collaboration CLIC08 Workshop CERN, 14 – 17 October 2008.
14 jan 2010 CALICE/EUDET FEE status C. de LA TAILLE.
HARDROC: Readout Chip for CALICE/EUDET Digital Hadronic calorimeter Nathalie Seguin-Moreau.
HaRDROC performance IN2P3/LAL+IPNL+LLR R. GAGLIONE, I. LAKTINEH, H. MATHEZ IN2P3/IPNL LYON M. BOUCHEL, J. FLEURY, C. de LA TAILLE, G. MARTIN-CHASSARD,
12/09/2007Julie Prast, LAPP, Annecy1 The DIF Task Force and a focus on the DHCAL DIF Remi Cornat, Bart Hommels, Mathias Reinecke, Julie Prast.
SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip Stéphane CALLIER, Christophe DE LA TAILLE, Frédéric DULUCQ, Gisèle MARTIN-CHASSARD, Nathalie SEGUIN-MOREAU.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
SPIROC : Silicon PM Readout ASIC Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin-Chassard, Christophe de La Taille, Ludovic Raux IN2P3/OMEGA-LAL.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
June 13rd, 2008 HARDROC2. June 13rd, 2008 European DHCAL meeting, NSM 2 HaRDROC1 architecture Variable gain (6bits) current preamps (50ohm input) One.
CALICE/EUDET FEE status C. de LA TAILLE. 31 aug 2009 EUDET SC meeting Status of JRA3 Front End Electronics 2 ILC front-end ASICs : the ROC chips SPIROC.
News from the 1m 2 GRPC SDHCAL collection of slides from : Ch.Combaret, I.L, H.Mathez, J.Prast, N.Seguin, W.Tromeur, G.Vouters and many others.
SPIROC ADC measurements S. Callier, F. Dulucq, C. de La Taille, M. Faucci, R. Poeschl, L. Raux, J. Rouenne, V. Vandenbussche.
11 may 2010 Performance of 2 nd generation ASICs for CALICE/EUDET C. de LA TAILLE OMEGA-LAL Orsay.
CALICE/EUDET FEE status C. de LA TAILLE. 16 jun 2009 TB meeting FNAL ASICs for CALICE/EUDET 2 First generation ASICs Readout of physics prototypes (ECAL,
CALICE/EUDET developments in electronics C. de La Taille IN2P3/LAL Orsay.
SKIROC status Calice meeting – Kobe – 10/05/2007.
DHCAL Acquisition with HaRDROC VFE Vincent Boudry LLR – École polytechnique.
Status of front-end electronics for the OPERA Target Tracker
HARDROC2: Before production in2p3
STATUS OF SPIROC measurement
3-bit threshold adjustment
ECAL front-end electronic status
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
CEPC 数字强子量能器读出电子学预研进展
HR3 status.
DHCAL TECH PROTO READOUT PROPOSAL
Status of the DHCAL DIF Detector InterFace Board
R&D on large photodetectors and readout electronics FJPPL KEK/Orsay JE Campagne, S. Conforti, F. Dulucq, C. de La Taille, G. Martin-Chassard,, A.
SKIROC2 Silicon Kalorimeter Integrated Read-Out Chip
C. de La Taille IN2P3/LAL Orsay
Multi-Anode ReadOut Chip for MaPMTs: MAROC3 MEASUREMENTS
CALICE/EUDET Electronics in 2007
Front-End electronics for CALICE Calorimeter review Hamburg
Felix Sefkow CALICE/EUDET electronics meeting CERN, July 12, 2007
02 / 02 / HGCAL - Calice Workshop
STATUS OF SKIROC and ECAL FE PCB
HaRDROC Hadronic Rpc Detector Read-Out Chip
SKIROC status Calice meeting – Kobe – 10/05/2007.
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
HARDROC STATUS 17 mar 2008.
HaRDROC status: (Hadronic RPC Detector Read Out Chip for DHCAL)
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
AIMS 1- Build SDHCAL prototype of 1m3 as close as possible to the one
Signal processing for High Granularity Calorimeter
AIDA KICK OFF MEETING WP9
2007 TWEPP – Prague – September 3-7, 2007
Presentation transcript:

HARDROC HAdronic Rpc ReadOut Chip IN2P3/LAL+IPNL+LLR R. GAGLIONE, I. LAKTINEH, H. MATHEZ (IN2P3/IPNL LYON) M. BOUCHEL, J. FLEURY, C. de LA TAILLE, G. MARTIN-CHASSARD, N. SEGUIN-MOREAU (IN2P3/LAL ORSAY) V. BOUDRY, J.C. BRIENT, C. JAUFFRET (IN2P3/LLR PALAISEAU)

Digital calorimetry in ILC Particle Flow Algorithm requires high longitudinal and transverse granularity in calorimetry for precise jet measurement It implies highly segmented steel sandwich hadron calorimeter (HCAL) Digital Hadron Calorimeter (DHCAL) may provide fine segmentation (~1cm2) with simplest yes/no read out system which is enough for neutral hadron pattern recognition and muon ID Train length 2820 bunch X (950 us) time Time between two trains: 200ms (5 Hz) Time between two bunch crossing: 337 ns IMAGING CALORIMETRY ILC BEAM 3-9 sept 07 HARDROC1 TWEP PRAGUE

DHCAL: Concept of a Digital Hadronic CALorimeter Absorber: 40 steel plates of 20 mm (~1X0), corresponds to 4λ Active medium: Resistive plate chambers (RPC) or GEM or MICROMEGAS. High granularity : 1x1 cm2 High segmentation => 5 107 channels for the entire HCAL 2bit resolution per PADs to preserve single particle resolution FE Chip embedded inside the detector Reduction of the power consumption to 10uW/channel (power pulsing possible thanks to ILC bunch pattern) Train length 2820 bunch X (950 us) time Time between two trains: 200ms (5 Hz) Time between two bunch crossing: 337 ns ILC BEAM 3-9 sept 07 HARDROC1 TWEP PRAGUE

HARDROC ASIC: main requirements Full power pulsing 64 inputs (low Zin), 1 serial output 1 variable gain preamp/channel with 6 bits accuracy (G=0 to 4 with 6% accuracy) Multiplex analog charge output (debugging) Variable gain fast shaper (15 ns) and 2 low offset discriminators: autotrig on 10fC Thresholds loaded by 2 internal 10bit-DACS A 128 depth digital memory: 20k data transferred during interbunch ASICS embedded inside the detector for compactness and daisy chained to minimize output lines on the detector Analog and digital crosstalk to be minimised 1700 chips to be produced in 2007 for a 1m3 DHCAL prototype 3-9 sept 07 HARDROC1 TWEP PRAGUE

HaRDROC architecture Only one serial output @ 1 or 5MHz Full power pulsing Digital memory: Data saved during bunch train. Only one serial output @ 1 or 5MHz Store all channels and BCID for every hit. Depth = 128 bits Data format : 128(depth)*[2bit*64ch+24bit(BCID)+8bit(Header)] = 20kbits Based on MAROC ASIC, but several design changes 3-9 sept 07 HARDROC1 TWEP PRAGUE

HARDROC1: TESTBOARD with Chip On Board PCB for COB: 6 layers, Chip on Layer 5 2 steps to facilitate the bonding 3-9 sept 07 HARDROC1 TWEP PRAGUE

Trigger efficiency: Scurves (1) Charge injected in one channel: 100fC Typically 3.5mV/fC Scurves performed by varying the DAC value (Threshold) 2 integrated DACs to deliver Threshold voltages Residuals within ±5 mV / 2.6V dynamic range. INL= 0.2% (2LSB) 2.5 mV/DAC Unit ie 0.7 fC/UADC Out FSB @Qinj=100fC DC=2V 350 mV 3-9 sept 07 HARDROC1 TWEP PRAGUE

Trigger efficiency: Scurves DAC0=Vth0=180 (~2.1V) Pedestal (Qinj=0) DC=2V Qinj=100fC Vth0=350 (~1.65V) 240 Pedestal Trigger Efficiency Vth0 3-9 sept 07 HARDROC1 TWEP PRAGUE

Scurves of the 64 channels, Gain PA=1 Charge injected in each channel: 100fC Non uniformity quite large (±25%) due to current mirror mismatch (small transistors to optimise speed) Can be compensated by tuning the gain of each channel (measurement to be redone). 3-9 sept 07 HARDROC1 TWEP PRAGUE

Scurves of the 64 channels, Gain PA=1 After tuning the gain of each channel 3-9 sept 07 HARDROC1 TWEP PRAGUE

Scurves of the 64 channels, Gain PA=1 After tuning the gain of each channel 3-9 sept 07 HARDROC1 TWEP PRAGUE

FSB DC measurement: Uniformity 3-9 sept 07 HARDROC1 TWEP PRAGUE

SS waveforms (scope measurements) Out Q: Very usefull for detector characterisation Compatible with existing DAQ0 used on testbeam SS: 10 pC => 535mV, slowest peaking time:tp=150 ns Slow Shaper (SS) 10 pC 1pC DC level ≈ 1V 3-9 sept 07 HARDROC1 TWEP PRAGUE

Zin and Xtk Zin (PA)=50Ω with Vgain=3V, Zin (PA)=70Ω with Vgain=3.5V Qinj=100fC on Ch7 out_fsb=160mV (on 50Ω), tp=15ns Xtk: well differentiated Ch6: ± 3mV Ch8: ± 3mV (± 2%) Ch9: ± 0.5mV Xtk: on the input Gain=1 on Ch7 and Gain=0 on Ch8, => Xth (ch8)=0 Ch7 Xtk Ch8 *100 Discri out/10 Scope, 50Ω) 3-9 sept 07 HARDROC1 TWEP PRAGUE

Trigger Xtk: DAC0 and DAC1= 300 (=> Vth0 =Vth1~50fC) Qinj in Ch7 Up to 1.6 pC: triggers on CH7 only, nothing on the neighbors 1.8 pC: Triggers on Ch7 and CH6, no trig on other channels 2 pC up to 5,6pC: Triggers on CH7, CH6 and 8 10pC Triggers on Ch7 and on the 4 direct neighbors. Ch7 Ch6 Ch8 1.8pC 50fC 3-9 sept 07 HARDROC1 TWEP PRAGUE

FPGA Config/Clock Extract Digital part (1) Chips to be embedded and daisy chained to minimise number of output lines inside the detector VFE ASIC Data ADC I/O Buffer FE-FPGA BOOT CONFIG Data Format Zero Suppress Protocol/SerDes FPGA Config/Clock Extract Clock Bunch/Train Timing Config Data Clk Slab FE FPGA PHY Clock+Config+Control VFE ASIC Conf/ RamFull Analog output DIF USB SCS I 3-9 sept 07 HARDROC1 TWEP PRAGUE

Digital part: DAQ2 DHCAL DAQ and online system Common to all detectors Crateless, non-custom, ILC-like system with readout directly into PCs System-dependences isolated to single interface (LDA-DIF) Offline software Common and based on LCIO, Grid 3-9 sept 07 HARDROC1 TWEP PRAGUE

MEMORY FRAMES: Auto trigger mode Auto trigger with 10fC: Qinj=10fC in Ch7 DAC0 and DAC1=255 (~5fC) Ch7 BCID Header 3-9 sept 07 HARDROC1 TWEP PRAGUE

Power dissipation Measured power dissipation (no power pulsing) Preamp : 6 mA = 100 µA/ch Fast shaper : 5,3 mA Discriminators (2) : 5.9 mA Slow shaper (used only for backup) : 14.5 mA DAC : 0.8 mA Bandgap reference : 5 mA Digital part : 3 mA Total : : 26 mA*3.5V = 90 mW/64ch = 1.4 mW/channel 140 mW if slow shaper (analog readout) is used Need to test power pulsing (0.5 to 1% duty cycle) -> 8-15 µW/ch 3-9 sept 07 HARDROC1 TWEP PRAGUE

PCB with 4 HARDROC First detector with 2nd generation ASCIs and 2nd generation DAQ 8X32 pads detector RPC, 8 layer PCB optimised to reduce Xtk and compatible with µMEGAS detector Board received in june 07, tests starting Test beam and cosmics 1 cm2 pads 500 µ separation 3-9 sept 07 HARDROC1 TWEP PRAGUE

HARDROC1 PERFORMANCE SUMMARY Number of inputs/outputs 64 inputs, 1 serial output Input Impedance 50-70Ω Gain Adjustment 0 to 4, 6bits, accuracy 6% Bipolar Fast Shaper ≈3.5 mV/fC tp=15ns 10 bit-DAC 2.5 mV/fC, INL=0.2% Trigger sensitivity Down to 10fC Slow Shaper (analog readout) ≈50 mV/pC, 5fC to 15pC , tp= 50ns to 150ns Analog Xtk 2% Analog Readout speed 5 MHz Memory depth 128 (20kbits) Digital readout speed 5MHz or more Power dissipation (not pulsed) 100 mW (64 channels) 3-9 sept 07 HARDROC1 TWEP PRAGUE

CONCLUSION 3-9 sept 07 HARDROC1 TWEP PRAGUE

ANNEXE 3-9 sept 07 HARDROC1 TWEP PRAGUE

ANALOG PART 3-9 sept 07 HARDROC1 TWEP PRAGUE

HARDROC1: digital part 3-9 sept 07 HARDROC1 TWEP PRAGUE

8x32 pads: RPC and µMegas RPC 6 PCBs (4chips): received beginning of MAy Tests with cosmics (standalone USB DAQ) in LLR +IPNL in June Tests in July07 with test beam at DESY and CERN with DAQ0 Can be used for DAQ2 tests (UK) 8 layer PCB FPGA 4 areas of 64 pads of 1 sq cm : bottom layer Hardroc external components : top layer 3-9 sept 07 HARDROC1 TWEP PRAGUE