Scaling sami.franssila@aalto.fi.

Slides:



Advertisements
Similar presentations
FABRICATION PROCESSES
Advertisements

CHAPTER 8: THERMAL PROCESS (continued). Diffusion Process The process of materials move from high concentration regions to low concentration regions,
CMOS Fabrication EMT 251.
CMOS Inverter Layout P-well mask (dark field) Active (clear field)
Chapter 2 Modern CMOS technology
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #6.
Ksjp, 7/01 MEMS Design & Fab IC/MEMS Fabrication - Outline Fabrication overview Materials Wafer fabrication The Cycle: Deposition Lithography Etching.
Design and Implementation of VLSI Systems (EN1600) lecture04 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Sedra/Prentice.
IC Fabrication and Micromachines
Device Fabrication Technology
Process integration
The Deposition Process
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process I Dr. Shiyan Hu Office: EERC 518 Adapted and modified from Digital Integrated.
Chapter 8 Ion Implantation Instructor: Prof. Masoud Agah
ES 176/276 – Section # 2 – 09/19/2011 Brief Overview from Section #1 MEMS = MicroElectroMechanical Systems Micron-scale devices which transduce an environmental.
Microfabrication Nathaniel J. C. Libatique, Ph.D.
Lithographic Processes
CS/EE 6710 CMOS Processing. N-type Transistor + - i electrons Vds +Vgs S G D.
Fabrication of Active Matrix (STEM) Detectors
Surface MEMS 2014 Part 1
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #2. Chip Fabrication  Silicon Ingots  Wafers  Chip Fabrication Steps (FEOL, BEOL)  Processing Categories 
Chris A. Mack, Fundamental Principles of Optical Lithography, (c) Figure 1.1 Diagram of a simple subtractive patterning process.
Why do we put the micro in microelectronics?. Why Micro? 1.Lower Energy and Resources for Fabrication 2.Large Arrays 3.Minimally Invasive 4.Disposable.
Integrated Circuit Devices Professor Ali Javey Summer 2009 Fabrication Technology.
IC Process Integration
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #3. Diffusion  Introduction  Diffusion Process  Diffusion Mechanisms  Why Diffusion?  Diffusion Technology.
Introduction to Wafer fabrication Process
Introduction Amorphous arrangement of atoms means that there is a possibility that multiple Si atoms will be connected Amorphous arrangement of atoms means.
INTEGRATED CIRCUITS Dr. Esam Yosry Lec. #4. Ion Implantation  Introduction  Ion Implantation Process  Advantages Compared to Diffusion  Disadvantages.
Application of Silicon-Germanium in the Fabrication of Ultra-shallow Extension Junctions of Sub-100 nm PMOSFETs P. Ranade, H. Takeuchi, W.-H. Lee, V. Subramanian,
By: Joaquin Gabriels November 24 th,  Overview of CMOS  CMOS Fabrication Process Overview  CMOS Fabrication Process  Problems with Current CMOS.
Introduction EE1411 Manufacturing Process. EE1412 What is a Semiconductor? Low resistivity => “conductor” High resistivity => “insulator” Intermediate.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
IC Processing. Initial Steps: Forming an active region Si 3 N 4 is etched away using an F-plasma: Si3dN4 + 12F → 3SiF 4 + 2N 2 Or removed in hot.
ISAT 436 Micro-/Nanofabrication and Applications Photolithography David J. Lawrence Spring 2004.
IC Fabrication/Process
©2008 R. Gupta, UCSD COSMOS Summer 2008 Chips and Chip Making Rajesh K. Gupta Computer Science and Engineering University of California, San Diego.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Digital Integrated Circuits A Design Perspective Manufacturing Process Jan M. Rabaey Anantha Chandrakasan.
Etch Process Input and Output Parameters Process Modeling how to use input parameters to achieve desired output parameters Process Model Quality parameter1.
Research Paper. Chapter 7: DOPANT DIFFUSION DOPANT DIFFUSION Introduction Introduction Basic Concepts Basic Concepts –Dopant solid solubility –Macroscopic.
Process integration Wafer selection active role for the wafer ? passive role ? –thermal conductivity –optical transparency –flat,
MEMS 2016 Part 2 (Chapters 29 & 30)
(Chapters 29 & 30; good to refresh 20 & 21, too)
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
Introduction to microfabrication, chapter 1 Figures from: Franssila: Introduction to Microfabrication unless indicated otherwise.
CMOS Fabrication EMT 251.
Process integration 2: double sided processing, design rules, measurements
Process integration 1: cleaning, sheet resistance and resistors, thermal budget, front end
Prof. Jang-Ung Park (박장웅)
Microfabrication Home 3 exercise Return by Feb 5th, 22 o’clock
Microfabrication Home exercise 1
Microfabrication CHEM-E5115 sami. fi victor
Manufacturing Process I
Lecture 4 Fundamentals of Multiscale Fabrication
Modern Semiconductor Devices for Integrated Circuits (C. Hu) Slide 3-1 Chapter 3 Device Fabrication Technology About transistors (or 10 billion for.
Chapter 1 & Chapter 3.
MEMS, Fabrication Cody Laudenbach.
Digital Integrated Circuits A Design Perspective
Chapter 8 Ion Implantation
Optional Reading: Pierret 4; Hu 3
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Chapter 7: DOPANT DIFFUSION
Manufacturing Process I
Chapter 1.
Manufacturing Process I
Photolithography.
CSE 87 Fall 2007 Chips and Chip Making
Basic Planar Process 1. Silicon wafer (substrate) preparation
Presentation transcript:

Scaling sami.franssila@aalto.fi

Contents Wafer size scaling Chip size scaling Wafer thickness scaling Projection lithography Etch scaling (from wet to dry) Selectivity scaling (CMOS gate) Gate oxide scaling Junction depth scaling Thermal budget scaling (RTA) Film thickness scaling (MLM, constant AR Fab size scaling Fab cost scalingLinewidth scaling

Wafer thickness scaling Wafer size scaling 525 µm 625 µm 725 µm 775 µm ?? 925 µm Wafer thickness scaling

Wafer size and demand Doering, R. & Y. Nishi: Limits of integrated circuit manufacturing, Proc. IEEE Vol. 89 (2001) p. 375

New prediction https://www.extremetech.com/extreme/163372-atom-everywhere-intel-breaks-ground-on-first-450mm-fab

Useful chips & edge exclusion

Chip scaling and wafer scaling

Chip size vs. Yield Good Money chips USD 255 1020 98 1176 32 1696 255 1020 98 1176 32 1696 18 1314 10 1490 6 1632 4 1668 EE141 © Digital Integrated Circuits 2nd Introduction 1 Digital Integrated Circuits A Design Perspective Introduction Jan M. Rabaey Anantha Chandrakasan.

Optical projection lithography  Sources of radiation (UV 365 nm-436 nm, DUV 193 nm-248 nm, EUV, X-rays, electrons, ions) Optical system I (lenses, mirrors) Mask (pattern) Optical system II Numerical aperture NA=sin  Imaging medium (resist) Wafer (with patterns) Wafer stage (alignment mechanism)

Reduction factor, often 5X Mask 1 µm minimum linewidth 5X optical reduction  0.2 µm on wafer

Projection litho performance

Table 10.1: Linewidth scaling of CMOS   Wavelength Aperture k factor Linewidth DoF =436 nm NA=0.38 k1=0.8 1 µm 1.5µm =365 nm NA=0.48 k1=0.6 0.5 µm 0.8 µm =248 nm NA=0.60 k1=0.6 0.25 µm 0.35 µm =248 nm NA=0.65 k1=0.5 0.18 µm 0.30 µm Because depth of focus (DoF) gets smaller, CMP planarization becomes more important all the time.

Projection lithography scaling Lin, MEMS2010

Photomask cost scaling Min LW Cost 3 µm 300 euros 1 µm 500 euros 1 µm 1000 euros, quality checked Mask LW Wafer LW Cost 1 µm 0.2 µm 2000 euros 0.5 µm 0.1 µm 5000 euros 200 nm 40 nm 20000 euros 100 nm 20 nm 50000 euros 1X litho 5X reduction litho

Refresher: etch profiles Wet etching  isotropic profile Plasma etching  anisotropic profile

Wet etched profile: 1 µm thick film

Plasma etched profile: 1 µm film

Wet etched profile: 200 nm film

Plasma etched profile: 200 nm film

Etch back Conformal deposition Anisotropic etch 200 nm/min for 1 minute. 400 nm 200 nm

Etch time, end point and overetch 100 nm 300 nm 100 % conformal deposition. 200 nm Etch rate 100 nm/min. Anisotropic etch. Etch time 1 min.  spacers formed Etch time 3 minutes; i.e. 2 minutes overetch (200%). Clears spacers.

CMOS gate etch selectivity CMOS linewidth: 5 µm Polysilicon gate: 500 nm thick Gate oxide thickness (LW/50) = 100 nm Etch selectivity poly:oxide = 10:1 Overetch = 50 % Oxide loss = nm Oxide loss = % of original thickness CMOS linewidth: 1 µm Polysilicon gate: 300 nm thick Gate oxide thickness (LW/50) = 20 nm Overetch = 50 % Oxide loss = same % loss as in above, Calculate etch selectivity poly:oxide needed to achieve this !

CMOS linewidth: 5 µm Polysilicon gate: 500 nm thick Gate oxide thickness (LW/50) = 100 nm Etch selectivity poly:oxide = 10:1 Presume: 500 nm/min poly  50 nm/min oxide Overetch = 50 %  0.5 min oxide etched  Oxide loss = 25 nm Oxide loss = 25% of original thickness CMOS linewidth: 1 µm Polysilicon gate: 300 nm thick Gate oxide thickness (LW/50) = 20 nm Overetch = 50 % Oxide loss = same % loss as in above, Calculate etch selectivity poly:oxide needed! Presume 300 nm/min  50% oe is 30 secs 5 nm loss allowed  10 nm/min oxide rate  30:1 selectivity needed

Gate oxide scaling Rule of thumb (valid for 1970-2000): linewith/50 = gate oxide thickness 5 µm  100 nm 1 µm  20 nm 0.5 µm  10 nm 0.2 µm  4 nm 0.1 µm  2 nm HERE WE RUN INTO PROBLEMS…

High-k dielectrics ZrO2 HfO2 High dielectric constants of ca. 20 (vs. 4 for SiO2) Deposited by ALD. SiO2 formed in the first steps of ALD, because H2O used as a precursor.

Equivalent oxide thickness Example: 6 nm ZrO2: EOT = (4/23)*6 nm + 0 nm = 1 nm 1 nm SiO2 + 6 nm ZrO2: EOT = (4/23)*6 nm + 1 nm = 2 nm

Junction depth scaling Thermal diffusion vs. ion implantation 300 nm deep  300 nm sideways 300 nm deep  100 nm sideways

CMOS S/D scaling 5 µm gate length 0.5 µm S/D diffusion depth  4 µm Leffective 1.5 µm gate length 0.5 µm S/D diffusion depth  0.5 µm Leffective

S/D scaling trick #1: implant energy down e.g. 50 keV B+ e.g. 10 keV B+ or 50 keV BF2+ Sideways spreading is 1/3 of vertical depth, for both.

S/D scaling trick #2: spacers Anisotropic etching of a conformal film Ion implantation  Leff = Lithographic !

Spacers and LDDs extended Energy X Energy scaled down  narrow spacer enough.

Thermal budget scaling & RTA Ion implantation always requires a high temperature annealing step to get rid of implant damage. I/I damage anneal time is short compared with diffusion because only local movement of atoms needed, e.g. to move an interstitial atom into a lattice site. As S/D junction needs to be shallower, anneal thermal budget (T,t) needs to be scaled down. E.g. 1100oC & 30 secs  1100oC & 15 secs  1050oC & 15 secs but then 1200oC & 1 s  1200oC & 0.1 sec

Sheet resistance scaling Rs  /T I/I dose constant 1015 cm-2 Use simple box approximation in transforming dose to concentration S/D 1 µm deep  1019 cm-3  Rs = 0.01 Ω-cm/10-4 cm = 100 Ω S/D 0.1 µm  1020 cm-3  0.001 Ω-cm/10-5 cm = 100 Ω

Aspect ratio scaling Actually, aspect ratio (height:width) does NOT scale; it has remained more or less 1:1 for decades.

8-level IC metallization

Fab cost scaling 1957 0.2 M$ 1967 2.5 M$ 1977 10 M$ 1987 100 M$ 2017 ?

Fab size scaling Year Wafer size LW WPM* 1970 3” 10 µm 1000 1980 100 mm 2 µm 5000 1990 150 mm 0.8 µm 10000 2000 200 mm 0.18 µm 20000 2010 300 mm 32 nm 50000 2020 300 mm 11 nm 70000 * Wafer starts per month

Wafer specifications for CMOS Wafer size 100 125 150 200 300 mm Thickness 525 625 675 725 775 µm TTV 3 3 2 1.5 1 µm Warp 20-30 18-35 20-30 10-30 10-20 µm Flatness <3 <2 <1 0.5-1 0.5-0.8 µm Oxygen 20 17 15 14 12 pmma OISF 100-200 100 <10 none none cm-2 Particles 10 10 5-10 10-100 50-100 #/wafer Particle size 0.3 0.3 0.3 0.16 0.12 µm Metal impurities 1012 1011 1011 5*1010 109 atoms/cm2