Particle Physics School Colloquium, May 2011 1 C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

H.-G. Moser Max-Planck-Institut für Physik MPI Semiconductor Laboratory (Halbleiterlabor: HLL) Common project of the: Max-Planck-Institut fuer Physik (Werner.
2nd Open Meeting of the SuperKEKB Collaboration, KEK, March 2009 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Sensor R&D and Prototyping - Status -
May 14, 2015Pavel Řezníček, IPNP Charles University, Prague1 Tests of ATLAS strip detector modules: beam, source, G4 simulations.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
Solid State Detectors-2
LCWS2002G/H Joint Session Fabrication of a Silicon Pixel/Pad for dE/dx Measurement H. Park (Kyungpook National U.) I.H. Park (Ewha Womans U.)
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
SILICON DETECTORS PART I Characteristics on semiconductors.
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Status report on the Asian Solid State Tracking R&D March 31, 2003 M. Iwasaki University of Tokyo.
Silicon detector processing and technology: Part II
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
Update on Simulation and Sensor procurement for CLICPix prototypes Mathieu Benoit.
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
Jyly 8, 2009, 3rd open meeting of Belle II collaboration, KEK1 Charles University Prague Zdeněk Doležal for the DEPFET beam test group 3rd Open Meeting.
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
On a eRHIC silicon detector: studies/ideas BNL EIC Task Force Meeting May 16 th 2013 Benedetto Di Ruzza.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
The ultralight DEPFET Pixel Detector of the Belle II Experiment Florian Lütticke On behalf of the DEPFET Collaboration th.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Spanish Linear Collider Meeting, Valencia, December 2012 Ladislav Andricek, MPI für Physik, HLL 1 DEPFET APS for future collider applications -Status and.
Thinning and Interconnection DEPFET Meeting, Valencia, Sept Ladislav Andricek, MPI für Physik, HLL  update on thinning  samples for thermal mock-ups.
1 FANGS for BEAST J. Dingfelder, A. Eyring, Laura Mari, C. Marinas, D. Pohl University of Bonn
Hybrid Boards for PXD6 5th International Workshop on DEPFET Detectors and Applications Sept Oct Christian Koffmane 1,2 1 Max-Planck-Institut.
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
1 The Belle II Vertex Pixel Detector IMPRS Young Scientist Workshop July , 2014 Ringberg Castle Kreuth, Germany Felix Mueller.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Preparations on DEPFET gate-mode Operation with Hybrid 4.1.x 17. April Christian Koffmane 1,2 for HLL team 1 Max-Planck-Institut für Physik, München.
Radiation Hardness of DEPFET Pixel Sensors Andreas Ritter IMPRS - Young Scientist Workshop 2010, Ringberg 1.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
PXD ASIC Review, Oct Ladislav Andricek, MPG Halbleiterlabor Belle II PXD Overview (An attempt to describe the) Interfaces between ASICs and the Experiment.
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
Testing PXD6 - testing plans
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Thinning and Plans for SuperBelle
The CSOI approach for integrated micro channels
Manufacturing Process I
Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC
DEPFET Active Pixel Sensors (for the ILC)
Integration and alignment of ATLAS SCT
The Belle II Vertex Pixel Detector (PXD)
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
Manufacturing Process I
Beam Test Results for the CMS Forward Pixel Detector
Presentation transcript:

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with 50µm thin DEPFETs Ultra-thin fully depleted DEPFET active pixel sensors

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin ILC VXD vs. SuperKEKB PXD (from a DEPFET point of view) -: radii: 15, 26, 37, 48, 60 mm ………………………………………………………. -: ladder length: 125mm(L0) and 250mm(L1-4) ………………………………… -: sensitive width: 11mm (L0), 15mm(L1), 22mm(L2-4) …………………….. -: number of ladders: 10/11/12/16/20  130 sensors ……………………….. -: pixel size: ≈20 µm ………………………………………………………………………. -: Row rate: ≈20 MHz ……………………………………………………………………… -: number of pixels: ≈800 Mpix ………………………………………………………… 14, 22 mm 136 mm(L0) and 169mm(L1) 12.5mm (L0, L1) 8/12  40 sensors 50x50 µm 2 (L0) 50x75 µm 2 (L1) ≈10 MHz ≈8 Mpix Minimal material in both application!!! (for sensor and support)

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin ILC VXD vs. SuperKEKB PXD (from a DEPFET point of view) -: radii: 15, 26, 37, 48, 60 mm ………………………………………………………. -: ladder length: 125mm(L0) and 250mm(L1-4) ………………………………… -: sensitive width: 11mm (L0), 15mm(L1), 22mm(L2-4) …………………….. -: number of ladders: 10/11/12/16/20  130 sensors ……………………….. -: pixel size: ≈20 µm ………………………………………………………………………. -: Row rate: ≈20 MHz ……………………………………………………………………… -: number of pixels: ≈800 Mpix ………………………………………………………… 14, 22 mm 136 mm(L0) and 169mm(L1) 12.5mm (L0, L1) 8/12  40 sensors 50x50 µm 2 (L0) 50x75 µm 2 (L1) ≈10 MHz ≈8 Mpix Minimal material in both application!!! (for sensor and support)

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin KEKB to SuperKEKB Belle-II -: e - /e +, 7 GeV & 4 GeV -: E cm at Y(4s) Resonance, (10.58 GeV) -: goal L = 8x10 35 cm -2 s -1 -: e - /e +, 7 GeV & 4 GeV -: E cm at Y(4s) Resonance, (10.58 GeV) -: goal L = 8x10 35 cm -2 s -1 Smaller beam size & more current:  40x higher luminosity Smaller beam size & more current:  40x higher luminosity Higher Background: occupancy and rad. damage -: QED background, intra-beam scatter., beam-gas, synchrotron Higher Background: occupancy and rad. damage -: QED background, intra-beam scatter., beam-gas, synchrotron Schedule and Milestones: 10/2014 ……………………. first beam 10/2014 – 05/2015 ……. beam commissioning 05/2015 – 09/2015 ……. shut down, sub-det install. 09/2015 – 11/2015 …….. det. commissioning 12/2015 ……………………. physics run

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin The DEPFET Belle-II PXD Inner layerOuter layer # ladders812 Sens. length90 mm123 mm Radius1.4 cm2.2 cm Pixel size50x50 µm 2 50x75 µm 2 # pixels 1600(z)x250(R- ɸ ) Thickness75 µm Frame/row rate50 kHz/10 MHz Angular coverage 17°<θ < 155° z vertex resolution significantly improved (PXD & SVD)  0.19 %X0 in total - Si contribution (0.15%)

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin Self Supporting All-Silicon Module 3D Modell of Belle-II Ladder Photo of thinned backside end-flange with CO2 channels and capillaries for air cooling (RPT sinter process) end-flange with CO2 channels and capillaries for air cooling (RPT sinter process)

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin MPI Semiconductor Laboratory MPI semiconductor lab Munich-Neuperlach 800 m² clean room class 100 … 1 15 cm Si process line custom made, non-standard equipment clean room building15 cm wafers in furnace boatspin coater mask aligner for photolithographywafer inspectionprocessed wafer

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin Semiconductor Processing planar technology J. Kemmer, 1983 example: ‘simple’ diode process 1 photolithographic step 2 ion implantations 1 etching step 2 layer depositions polished n-type wafer oxidation photolithography: - UV illumination - mask - wafer coated with photoresist -photoresist development - oxide etching boron & phosphorous implantation aluminum deposition aluminum patterning

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin MOSFET (MOS field effect transistor) MOSFET – basis of the DEPFET example: p-channel enhancement mode controllable resistor source - drain V gate ≥ 0 V  electron accumulation layer  no current flow V gate < V threshold  hole inversion layer  hole current from source to drain  current value adjustable by V gate via inversion charge density

DEPFET Technology Particle Physics School Colloquium, May planar technology example: DEPFET process 20 photolithographic steps 10 ion implantations 8 etching steps 9 layer deposition steps cycle time ≥ 1 year SiO 2 Al Poly cleargate clearregion internal gate passivation DEPFET DEPFET tech.

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin DEPFET and auxiliary ASICs  DEPFET = depleted p-channel field effect transistor  Fully depleted sensitive volume  Charge collection in the “off” state, read out on demand  Modulation of the FET current by the charge in the internal gate  Clear contact to empty the internal gate  Low power dissipation DEPFETs ~ 1 W Switcher ~ 1 W DCD/DHP ~ 8 W on each ladder end  DEPFET = depleted p-channel field effect transistor  Fully depleted sensitive volume  Charge collection in the “off” state, read out on demand  Modulation of the FET current by the charge in the internal gate  Clear contact to empty the internal gate  Low power dissipation DEPFETs ~ 1 W Switcher ~ 1 W DCD/DHP ~ 8 W on each ladder end Switcher: 180nm HVCMOS AMS Size 3.6  1.5 mm 2 Gate and Clear Signal DCD: “Drain Current Digitizer” UMC 180nm f/e and ADC DHP: “Data Handling Processor” IBM 90nm  TSMC 65nm Digital Control Chip DEPFET Matrix  CO 2 cooling at end flange  gentle gas flow in sensitive region  CO 2 cooling at end flange  gentle gas flow in sensitive region

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin Processing Thin Detectors - The SOI Approach The DEPFET thickness becomes a free parameter, adjustable to the needs of the experiment! Key Process Modules: -: Wafer Bonding and thinning of top layer (external) -: Sensor fabrication on SOI -: Etching of the Handle Wafer -: Litho on extreme topographies Top Wafer Handle Wafer a) oxidation and back side implant of top wafer b) wafer bonding and grinding/polishing of top wafer c) process  passivation open backside passivation d) anisotropic deep etching opens "windows" in handle wafer Custom made SOI Wafer

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin Integrated Silicon Frame

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin -: SOI wafers (50 µm sensor layer) + reference wafers on std. 450µm material -: 4 half-ladders for Belle II with the most promising design options -: About 100 test matrices in different design variations (ILC design and Belle II design) -: pixel sizes from 20 µm to 200 µm -: shorter gate length -: improved clear structures -: various field shapes -: SOI wafers (50 µm sensor layer) + reference wafers on std. 450µm material -: 4 half-ladders for Belle II with the most promising design options -: About 100 test matrices in different design variations (ILC design and Belle II design) -: pixel sizes from 20 µm to 200 µm -: shorter gate length -: improved clear structures -: various field shapes Thin DEPFET Prototyping for Belle II and ILC

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin DEPFET/DCD-B Test System  320 MHz DCD-B clock   100 ns signal processing time per row  S/N=17 for Sr90 “mip”, settings not yet optimal..  320 MHz DCD-B clock   100 ns signal processing time per row  S/N=17 for Sr90 “mip”, settings not yet optimal.. Switcher-B for Clear and Gate Control PXD6 Belle-II DEPFET Matrix 32x64 Pixels L = 6 µm Pixel Size 50 x 50 µm² DCD-B Read-out Chip DCD-RO Line Driver and Buffer to FPGA

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin Signal Measurement – Sr90 2 DUTs: 32x64 pixels Belle II PXD design, L=6 µm, pixel size 50x75 µm 2, same design on front  I : 450 µm standard FZ material  II: 50 µm SOI t = 450 µm S/N ≈ 171 t = 50 µm S/N≈21  β source, ~2MeV end energy, close to mip  photons and LE e - blocked by 4.3 mm plastic  external scintillator trigger below the sensor  β source, ~2MeV end energy, close to mip  photons and LE e - blocked by 4.3 mm plastic  external scintillator trigger below the sensor  from Cd109 we know: 1 ADU  19.8 e -  Sr90 signal with 50µm: 210 ADU  4164 e -  expect ~80e-/µm for a mip: ~4000 e - for 50µm  signal(450µm) : signal(50µm): 8.2  from Cd109 we know: 1 ADU  19.8 e -  Sr90 signal with 50µm: 210 ADU  4164 e -  expect ~80e-/µm for a mip: ~4000 e - for 50µm  signal(450µm) : signal(50µm): 8.2

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin Thin DEPFET - Beam Test Oct Beam Test 3-12 October at CERN SPS -: AIDA Telescope (1 µm pointing precision) -: 2 DUTs with 50µm thin DEPFET, 1 DUT with 450µm -: different pixel designs (S/N of 20 and 40) -: read out with 100MHz and 320MHz -: angle and voltage scans to optimize design parameters -: correlation between telescope tracks and DUT found Beam Test 3-12 October at CERN SPS -: AIDA Telescope (1 µm pointing precision) -: 2 DUTs with 50µm thin DEPFET, 1 DUT with 450µm -: different pixel designs (S/N of 20 and 40) -: read out with 100MHz and 320MHz -: angle and voltage scans to optimize design parameters -: correlation between telescope tracks and DUT found

Signal – 120GeV Pions Particle Physics School Colloquium, May Noise performance: Common mode noise < 1 ADU Intrinsic noise, after CM subtraction: 0.5 ADU Noise measurement agrees with lab. tests Preliminary result for most probable signal on H4.1.04: MPV ~ 10 ADU S/N ratio ~ 20 (i.e. 40 in Belle-II)

Spatial Resolution Particle Physics School Colloquium, May Single-pixel cluster show expected “box” distribution from -25 to +25 μm, smearing by telescope resolution ~ 2-3 μm binary RMS = 50 μm / √12 = 14.4 μm Multiple-pixel clusters are relatively rare under perpendicular incidence Spatial resolution depends on incidence angle, S/N, clustering (esp. 0-suppression), bias voltage (scan under analysis) Spatial resolution of module H in X(left) and Y(right) dy [um]

Angular Scan Particle Physics School Colloquium, May Rotation around y-axis. Charge sharing in X-direction increases

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin Summary The DEPFET technology, including thinning and the module concept, initially developed for application at the ILC found it’s way into a high precision vertex detector at SuperKEKB. The mechanical concept and the thermal management is adapted to the Belle II geometry, but engineered designs, techniques, technologies can and will be transferred to the barrel geometry at future linear collider. A new read-out chip generation (DCD-B) has been designed and tested and shows the expected performance with the DEPFET. First tests show that thin DEPFETs have the expected performance. A beam tests to measure the single point resolution of thin active pixel sensors was done and the data further analysis is ongoing.

Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin Thank you!