1 Front-end electronic for Si-W calorimeter Sylvie Bondil Julien Fleury Christophe de La Taille Gisèle Martin Ludovic Raux.

Slides:



Advertisements
Similar presentations
Electronics for large LAr TPC’s F. Pietropaolo (ICARUS Collaboration) CRYODET Workshop LNGS, March 2006.
Advertisements

Jeudi 19 février 2009 Status of SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin-Chassard, Christophe de La.
6 Mar 2002Readout electronics1 Back to the drawing board Paul Dauncey Imperial College Outline: Real system New VFE chip A simple system Some questions.
R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
1 H-Cal front-end ASIC Status LAL Orsay J. Fleury, C. de la Taille, G. Martin, L. Raux.
27 th May 2004Daniel Bowerman1 Dan Bowerman Imperial College 27 th May 2004 Status of the Calice Electromagnetic Calorimeter.
10 th November 2004Daniel Bowerman1 Dan Bowerman Imperial College Calice Meeting - UCL 10 th November 2004 Electronics Status For the Imperial, Manchester,
1 SciFi electronics meeting – CERN– June 20 th 2011 Some ideas about a FE for a SciFi tracker based on SiPM A. Comerma, D. Gascón Universitat de Barcelona.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
Oct, 2000CMS Tracker Electronics1 APV25s1 STATUS Testing started beginning September 1 wafer cut, others left for probing 10 chips mounted on test boards.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.
Building blocks 0.18 µm XFAB SOI Calice Meeting - Argonne 2014 CALIIMAX-HEP 18/03/2014 Jean-Baptiste Cizel - Calice meeting Argonne 1.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay on behalf of the CALICE and EUDET collaborations
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
Vendredi 18 décembre 2015 Status report on SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin- Chassard, Christophe.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
SPIROC update Felix Sefkow Most slides from Ludovic Raux HCAL main meeting April 18, 2007.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN.
ASIC Activities for the PANDA GSI Peter Wieczorek.
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
1 Front-End R and D in HEP (Room temperature and Cryogenic Temperature) Mains analog blocks Charge Sensitive Amplifier Shapers Buffer  ILC (DHCAL et ECAL)
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
Front-End electronics for Future Linear Collider W-Si calorimeter physics prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
Aurore Savoy-Navarro 1), Albert Comerma 2), E. Deumens 3), Thanh Hung Pham 1), Rachid Sefri 1) 1) LPNHE-Université Pierre et Marie Curie/IN2P3-CNRS, Fr.
14 jan 2010 CALICE/EUDET FEE status C. de LA TAILLE.
ILC/EUDET developments at LAL Scientific council 23/9/05 B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
PArISROC Photomultiplier Array Integrated in Sige Read Out Chip Selma Conforti Frédéric Dulucq Christophe de La Taille Gisèle Martin-Chassard Wei
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
Electronics for Si-W calorimeter LCWS06 Bangalore – March, 10 th Gérard Bohner, Pascal Gay, Jacques Lecoq Samuel Manen, Laurent Royer Michel Bouchel, Bernard.
VFE & PCB Status & schedule of production Presented by Julien Fleury Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting London 2008.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Tuesday, 20 May 2003OPERA Collaboration Meeting - Gran Sasso1 Status of front-end electronics for the OPERA Target Tracker LAL Orsay S.BONDIL, J. BOUCROT,
Organization for Micro-Electronics desiGn and Applications HGCAL Front-End Electronics Christophe de LA TAILLE, Marcello MANNELLI sept 2015.
Understanding of SKIROC performance T. Frisson (LAL) On behalf of the SiW ECAL team Special thanks to the electronic and DAQ experts: Stéphane Callier,
Status of front-end electronics for the OPERA Target Tracker
STATUS OF SPIROC measurement
3-bit threshold adjustment
A 12-bit low-power ADC for SKIROC
A General Purpose Charge Readout Chip for TPC Applications
ECAL front-end electronic status
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
Analog FE circuitry simulation
DHCAL TECH PROTO READOUT PROPOSAL
R&D activity dedicated to the VFE of the Si-W Ecal
Electronics for Si-W calorimeter
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
Electronics for the E-CAL physics prototype
EUDET – LPC- Clermont VFE Electronics
Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard
Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard
02 / 02 / HGCAL - Calice Workshop
prototype PCB for on detector chip integration
STATUS OF SKIROC and ECAL FE PCB
ECAL Electronics Status
SKIROC status Calice meeting – Kobe – 10/05/2007.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Signal processing for High Granularity Calorimeter
Presentation transcript:

1 Front-end electronic for Si-W calorimeter Sylvie Bondil Julien Fleury Christophe de La Taille Gisèle Martin Ludovic Raux

2 Plan Electronic for a physics prototype Electronic for a technologic prototype

3 Front-end Electronic for Physic Prototype

4 Presentation of the front-end electronic 6 active wafers Made of 36 silicon PIN diodes  216 channels per board Each diode is a 1cm² square 12 FLC_PHY3 front-end chip 18 channels per chip 13 bit dynamic range 2 calibration switches chips 6 calibration channels per chip 18 diodes per calibration channel Line buffers To DAQ part Differential 14 layers 2.1 mm thick Made in korea

5 Amp OPA MUX out Gain=1 MUX out Gain=10 1 channel FLC_PHY3 overview 4 bits for gain selection Gain from 0.3 to 5 V/pC Gain selected offline Multi-gain charge preamp Gain 1 and gain 10 Work in parallel to select gain a posteriori Dual shaper & track and hold 18 channel input 1 mux output Global characteristcs

6 FLC_PHY3 meas. Results - Linearity Linearity curves (sweeping Cf / G1)Residuals (Cf=1.6pF / G1) A few ‰ on every gain Measured Linearity Within ‰ linearity : Q IN MAX = 6.04 pC (900 Q IN MAX = 3.27 pC (500 Q IN MAX = 0.41 pC (60 Measured input charge swing e - 50 GeV

7 FLC_PHY3 meas. Results - Transient Transient Output vs Gain (G1) Gain vs feedback capacitance setting 189ns ± 1% 174ns ± 1% Peaking time uniformity 696 mV ± 2.5% 6.29 V ± 2.9% Gain Cf=1.6pF

8 FLC_PHY3 meas. Results - Noise ENC measurement and fit (Cf=1.6pF) Noise Series : e n = 1.6nV/√Hz Detector + line capacitance on physic proto : 70 pF  ENC : 4000 e - ( 1/10 MIP)  Ouput noise : 500 μV RMS Crosstalk Below 1 ‰ with gain 1 shaping Below 2 ‰ with gain 10 shaping

9 Physic prototype front-end status Status of front-end chip FLC_PHY PRODUCTION DONE chips are being packaged -Automated Test Equipement for testing is ready -Production will be ready for application in May -Many spares lying around for other applications Status of front-end PCB READY FOR PRODUCTION -Prototype has been debugged -Functionalities has been checked : -With Cosmic bench DAQ (for cross-calibration) -With test beam DAQ -Pre-production has been sent in beginning April -65 boards will be produced by the end of June

10 Front-end electronic for Technologic prototype © Marc A, LLR

11 Technology choice Our expectations -Perennity : No way the technology we choose dies before the production … in 20xx… -Good digital performance : It sounds clear that electronic for FLC will be mixed -Good analog performance : It still sounds clear that electronic for FLC will be mixed -And of course, as cheap as possible Our choice : AMS 0.35um CMOS (C35b4) and AMS 0.35 SiGe BiCMOS (S35b4) -Perennity : used by car industry and RF industry who need « normal » voltage supply (3.3V) -Good digital performance : Transistors are small enough to go as fast as we need -Good analog performance : Transitors are big enough to allow a 3.3V supply and let room for analog voltage swing -And of course, as cheap as possible Big volume  cheap due to huge industrial customer

12 Electronic for a technologic prototype What is in the TDR : - Charge preamp, tri-gain shaper - Auto-trigger + Analog memory - Output : Channel ID, BCID, Energy - Chips at calorimeter end, 128 channels/chip, 1 W Lenght >1m Si Wafer PCB Front-end

13 Alternative solution for electronic TESLA TDR solution - Industry cannot build 1m PCB and tendance is going smaller -High line capacitance  very noisy -Big number of lines  crosstalk issue and many PCB layers  Alternative solution - Chip embedded in detector -1 chip per wafer (36-channel chip) -low power issue -Cooling issues -temperature distribution in module? -Fake signal due to e.m. showers in chip ?  Tungsten Si Wafers PCB VFE chip Cooling 8.5mm

14 Digital memory Out Power control Alternative electronic synoptic Ch Ch.2 Ch.36 3 BCID 10 ADC Energy BCID Gain Channel Select Chan. 6

15 Charge preamp. for a techno prototype pF 0.4pF 0.8pF 1.6pF 1pF 2pF 4pF IN IDLE OUT AMS 0.35 CMOSTechnology SubmissionApril, 19 th 2004 Expectations : -Low noise : ~1nV/sqrt(Hz) -Low power : below 1mW -Settling time : around 2us

16 Shapers for a techno prototype AMS 0.35 CMOSTechnology SubmissionApril, 19 th Conservative version -Peaking time : 200ns -Low power : below 400uW -Gain 1 & 10 Op. amp. shaper -Peaking time : 200ns -Low power : below 400uW -Gain 1 & 10 -High Gain-Bandwidth Product ( >2GHz) Current feedback Op. amp. shaper -Peaking time : variable from 100ns to 1us -Low power : below 400uW -Variable gain : from 1 to 15 -Auto-hold capability Capacom shaper

17 ADC for a techno prototype -10 bits -C/2C network -Consumption : 1mW -Bit rate : ~ 1 MSamples/s SAR (successive approximation) ADC AMS 0.35 CMOSTechnology SubmissionApril, 19 th 2004

18 FLC_TECH : a first iteration AMS 0.35 CMOSTechnology SubmissionApril, 19 th 2004 Ch Ch.2 Ch.3 Multiplexing Output SCA (depht : 5) -3 channels -Multi-gain charge preamplifier -2 shaping : gain 1 and gain depht SCA -Multiplexed output, auto-trigger and Idle mode FLC_TECH description

19 LPC contribution to techno prototype -Gerard Bohner -Pascal Gay -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr Comparator V ref V IN Amplifier Gain=2 V ref Gnd Bit N out To V IN stage N+1 Stage N of pipeline ADC block schema V IN b0b0 b1b1 b2b2 b3b3 b4b4 b5b5 b6b6 b7b7 b8b8 b9b9 10 bit ADC  10 stages -First iteration (AMS 0.8 CMOS) is working well -New iteration (AMS 0.35 CMOS) submitted in April, 19 th Status -10 bit -up to 5MS/s 50 MHz) -Consumption around 10mW Performance 10 bits low power high speed pipeline ADC

20 Conclusion Physic prototype -Beginning of production -On time, so far -Ready for test beam in dec Good start point for techno proto Technologic prototype -Working on embedded chip solution -Many blocks in design -Focus on low power issue -Pulsed supply -Low power design -Big work to do on ADC Questions