Presentation is loading. Please wait.

Presentation is loading. Please wait.

Other Logic Implementations

Similar presentations


Presentation on theme: "Other Logic Implementations"— Presentation transcript:

1 Other Logic Implementations

2 Pass gate/Transmission Gate
C=1 OUT=A C=0 OUT=NO OUTPUT (OPEN CIRCUIT) Pass Gate NMOS passes good logic ‘0’ PMOS passes good logic ‘1’ CMOS TRANSMISSION GATE (TG)

3 Multiplexer C=1 C=0 1 A 1 B C A B F 1

4 AND Gate A=1 B=1 1 1 1 1 A B F 1 1 A=0 B=1 1 1 1

5 OR Gate A=0 B=0 1 1 A B F 1 A=1 B=0 1 1 1

6 Delay Calculations of Pass gates

7 4-1 MUX

8 High Current Delivery For High Current requirements of L-H transitions
For High Current requirements of H-L transitions

9 Tristate 1 0/1 Z 0/1 1/0 1 EN IN OUT 1 X

10 EX-OR Gate A B F 1

11 EX_OR A=1 B=1 X 1 1 A=1 B=0 1 1 A=1 B=1 A=0 B=1 1 1 1 1 1 1

12 EX-OR/NOR With Driving Output
A=0 B=0 10 1 An inversion of the left circuits A=0 B=1 1 1 X X 1

13 PLA

14 Example : PLA

15 Transistor level Implementation
Input Lines Output line Input Lines Output Lines

16 Pseudo-nMOS Implementation
Red is Input Green is Ground Ground

17 Altera 40nm FPGA’a http://www. altera
Table 2. HardCopy IV E Devices Overview Device (1) ASIC Gates (2) Memory Bits (3) I/O Pins PLLs FPGA Prototype HC4E2YZ 3.9M 8.1 4 EP4SE110 HC4E3YZ 9.2M 10.7 EP4SE230 HC4E4YZ 7.6M 4/8/12 EP4SE290 HC4E5YZ 9.5M 16.8 EP4SE360 HC4E6YZ 11.5M 8/12 EP4SE530 HC4E7YZ 13.3M EP4SE680 Notes: Y = I/O count, Z = package type (see the product catalog for more information) ASIC gates calculated as 12 gates per logic element (LE), 5,000 gates per 18 x 18 multiplier (SRAMs, PLLs, test circuitry, I/O registers not included in gate count) Not including MLABs

18 FPGA Comparison Table Features Artix-7 Kintex-7 Virtex-7 Spartan-6
Logic Cells 352,000 480,000 2,000,000 150,000 760,000 BlockRAM 19Mb 34Mb 68Mb 4.8Mb 38Mb DSP Slices 1,040 1,920 3,600 180 2,016 DSP Performance (symmetric FIR) 1,248GMACS 2,845GMACS 5,335GMACS 140GMACS 2,419GMACS Transceiver Count 16 32 96 8 72 Transceiver Speed 6.6Gb/s 12.5Gb/s 28.05Gb/s 3.2Gb/s 11.18Gb/s Total Transceiver Bandwidth (full duplex) 211Gb/s 800Gb/s 2,784Gb/s 50Gb/s 536Gb/s Memory Interface (DDR3) 1,066Mb/s 1,866Mb/s 800Mb/s PCI Express® Interface Gen2x4 Gen2x8 Gen3x8 Gen1x1 Agile Mixed Signal (AMS)/XADC Yes Configuration AES I/O Pins 600 500 1,200 576 I/O Voltage 1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.3V 1.2V, 1.5V, 1.8V, 2.5V, 3.3V 1.2V, 1.5V, 1.8V, 2.5V EasyPath Cost Reduction Solution -

19 use a narrow clock pulse. (Impractical)
Sequential Circuits For correct operation, Solution: use a narrow clock pulse. (Impractical)

20 Clocking Conditions Condition to achieve proper operation:
Problem: Clock Skew

21 Two-phase Non-Overlapping clocking
Problems: Routing two Clock Nets, Lower Frequency of Operation

22 Sequential Circuits-Single Clock
-ve going edge Single clock to synchronize operations Suitable for simple applications

23 Different Latches Static latch with cross-coupled circuit Dynamic
Static latch with clocked feedback Buffered static latch with clocked feedback

24 D-Latch and the Flip Flop Operations

25 The Master Slave Flip Flop
+ve edge of CLK 2

26 Master Slave Flip Flop Setup time=G4+G5+G6 Hold time=G1+G2 W1=G5+G6+G3
Cycle time=W1+W2 CLK generated locally Typical arrangement,

27 Set-Up Time G4+G5+G6 Before CP Active Edge 0 1
1 X Before CP Active Edge Data has to bet set stable Set-Up Time G4+G5+G6

28 Hold Time G1+G2 After CP Active Edge 1 0 Data has to bet set stable X
X 1 1 Hold Time G1+G2 1 X 1 1

29 1 X LOW VALUE, W2 G3 +G5 +G6

30 1 X CLK HIGH , W1 G7 +G9 +G10

31 CMOS two phase double latch circuits
Dynamic CLK1=1 CLK2=1 CLK1=1 CLK2=1 Static un-buffered Static buffered

32 Edge Triggered, D Flip Flop
NAND1 S Q NAND2 NAND5 clk R NAND3 NAND6 D NAND4 reset

33 When CLK changes from 0 to 1 Case1, D=0: tsetup= t4, thold=t3
reset Q NAND1 NAND2 NAND3 NAND4 NAND5 NAND6 S R Path for set up Path for hold Nand00 1 01 1 1 0 1

34 When CLK changes from 0 to 1 Case2, D=1 tsetup=t4 + t1 thold= t2
reset Q NAND1 NAND2 NAND3 NAND4 NAND5 NAND6 S R Path to hold 1 Nand00 1 01 1 0 1 Path to set up

35 When CLK changes from 0 to 1 Case1, D=0: tsetup= t4, thold=t3
Case2, D=1 tsetup=t4 + t1 thold= t2 clk D reset Q NAND1 NAND2 NAND3 NAND4 NAND5 NAND6 S R

36 D Flip Flop Rising Edge Data Change

37 D Flip-Flop with direct set and clear
Input Output SD CD D C O O’ H L X On+1 O’n+1

38 JK Flip-Flop Input Output SD CD C J K O O’ H L X On+1 O’n+1 No Change

39 Thank you !


Download ppt "Other Logic Implementations"

Similar presentations


Ads by Google