FEE 2006, Perugia, 20.05.2006 Marcel Trimpl, University of Bonn - 1 - VIth Workshop on Front End Electronics Perugia, Mai 2006 M.Trimpl DEPFET – collaboration:

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
CHARGE COUPLING TRUE CDS PIXEL PROCESSING True CDS CMOS pixel noise data 2.8 e- CMOS photon transfer.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Tobias Haas DESY 7 November 2006 A Pixel Telescope for Detector R&D for an ILC Introduction: EUDET Introduction: EUDET Pixel Telescope Pixel Telescope.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
DEPFET Electronics Ivan Peric, Mannheim University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
Prague, Marcel Trimpl, Bonn University DEPFET-Readout Concept for TESLA based on Current Mode Signal Processing Markus Schumacher on behalf.
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
H. Krüger, , DEPFET Workshop, Heidelberg1 System and DHP Development Module overview Data rates DHP function blocks Module layout Ideas & open questions.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Radiation Hardness of DEPFET Pixel Sensors Andreas Ritter IMPRS - Young Scientist Workshop 2010, Ringberg 1.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford Ringberg Workshop, 8 April 2008 Pixels with Internal Storage: ISIS by LCFI.
Testsystems PXD6 - testing plans overview - by Jelena NINKOVIC Hybrid Boards for PXD6 - by Christian KOFFMANE Source measurements on DEPFET matrices using.
Pixel front-end development
The DEPFET for the ILC Vertex Detector
LHC1 & COOP September 1995 Report
Jan Soldat, Heidelberg University for the DSSC ASIC design groups
Readout electronics for aMini-matrix DEPFET detectors
First Testbeam results
Silicon Lab Bonn Physikalisches Institut Universität Bonn
The Belle II Vertex Pixel Detector (PXD)
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
BESIII EMC electronics
Presentation transcript:

FEE 2006, Perugia, Marcel Trimpl, University of Bonn VIth Workshop on Front End Electronics Perugia, Mai 2006 M.Trimpl DEPFET – collaboration: MPI/MPE Munich L.Andricek, P.Lechner, H.G. Moser, R.H.Richter, L.Strüder, G.Lutz, J.Treis U Mannheim P.Fischer, F.Giesen, C.Kreidel, I.Peric U Bonn M.Koch, R.Kohrs, H.Krüger, P.Lodomez, L.Reuen, C.Sandow, M.Trimpl, E.v.Törne, J.J.Velthuis, N.Wermes U Prague Z.Doležal, P Kodyš, D.Scheirich U Aachen L.Feld, W. Karpinski, K.Klein DEPFET pixels for the ILC and associated readout electronics

FEE 2006, Perugia, Marcel Trimpl, University of Bonn Motivation: DEPFET pixels at the ILC - Sensor production and measurements - FE r/o-electronics (CURO): - architecture - input cascode - current memory cell - hit detection & zero suppression - Results: CURO II chip - ILC DEPFET-System (lab, beam test) - Summary and Outlook outline

FEE 2006, Perugia, Marcel Trimpl, University of Bonn frame: ~300µm sensor: ~50µm layer one readout steering r=15 mm 8 modules ‘holes’ to reduce material thinned silicon sample vertexing at the ILC layer one close to beam pipe (15mm) readout in 50µs (layer one) triggerless operation (on chip hit identification and zero suppression) ~ 0.1 % X 0 / layer material budget low power (10W ?)  passive cooling some ILC requirements [L.Andricek, MPI Munich]

FEE 2006, Perugia, Marcel Trimpl, University of Bonn DEPFET principle and clear operation  FET-Transistor integrated in pixel (first amplification)  charge generation in whole substrate (d=50µm, ENC=100e - : S/N > 40)  charge collection due to electric field  figure of merit: internal gain (g q =  I D /  q)  remove charge via „clear“ contact  remove all charge  complete clear no „reset-noise“, needed at the ILC clearprinciple

FEE 2006, Perugia, Marcel Trimpl, University of Bonn sensor production for the ILC gate clear drain fabricated: matrices with up to 128x64 pixel, 450µm thick linear double pixel structures (22x36 µm 2 pixels) (high density layout) new production started recently 03/2006: matrices up to 512x512 pixel full ILC length column & row test structures special cleargate to support clear operation

FEE 2006, Perugia, Marcel Trimpl, University of Bonn radiation tolerance: sensor 200krad shift of threshold voltage of MOSFETs (oxide thickness ~200nm) shift: - 4…- 6 V saturation after 200 kRad shaping-time = RT single pixel spectrum from iron-peak: ENC ~ 15 e - (comparable with preirrad. structures) 55 Fe ~ 1MRad irradiation up to 1MRad using 60 Co [L.Andricek, MPI Munich]

FEE 2006, Perugia, Marcel Trimpl, University of Bonn complete clear achieved with static clear gate! required voltages small (5 – 7 V) – important for future SWITCHER! clear (gate) operation does not decrease after irradiation (1MRad) (Clear off = 2V) Complete clear in only 10 ns: Measurements on mini matrix devices ‘noise’ becomes minimal if clearing is complete! U Clear-off = 3 V region of complete clear high-E clear efficiency various designs (high-E, no high-E) geometries (length of clear gate) operating conditions (static or clocked clear gate) static! [C.Sandow, Bonn]

FEE 2006, Perugia, Marcel Trimpl, University of Bonn matrix operation I Drain = Pedestal + Signal I Drain I Drain = Pedestal I Drain = Pedestal + Signal low power consumption, low multiple scattering but line rate: ≥ 20MHz ideal r/o: current based, no I  U

FEE 2006, Perugia, Marcel Trimpl, University of Bonn steering chip SWITCHER 4.6 mm 4.8 mm typical value: < 200  nmos (Vlow): PMOS GNDA Out VDDA/GNDA NMOS Vhigh Vlow >50% Layout size ! C row =15pF   = 3ns ( fast steering ! ) [I.Peric, Mannheim]

FEE 2006, Perugia, Marcel Trimpl, University of Bonn regulated cascode keeps potential at input constant Hit-Finder finds up to 2 hits per cycle: - analog currents to outA, outB - digital hit position stored in HIT-RAM FIFOs digital part is scanned with HIT-Finder pedestal current is subtracted at input node after reset (fast CDS) pedestal + signal is stored in current memory cell overview: CURO-Architecture CUrrent ReadOut

FEE 2006, Perugia, Marcel Trimpl, University of Bonn CURO II 128 input channel (DEPFET - Matrix) 12x 8bit DACs Biasing, test currents, thresholds pads (communication): fast signals: LVDS steering unit: ~ 20 steering signals TSMC 0.25µm 5 metal layer 4.5 x 4.5 mm 2 11/2003 analog part: current memory cells, comparator digital part: Hit-Finder, RAM, FIFO

FEE 2006, Perugia, Marcel Trimpl, University of Bonn input cascode   C L. R in present-matrices : 7.5pF; final ILC-matrices:  40pF !! cascode compensates load capacitance control dynamic behavior (pole-zero cancellation) CUROIIb: power down feature IBias = 1µA static operation  fix input potential 500µA  high speed operation higher gm by higher IBias  speed vs. power

FEE 2006, Perugia, Marcel Trimpl, University of Bonn I1I1 I2I2 I out= I 1 – I 2 I in I = I in + I B [Hughes/Toumazou] (use of cascode techniques !) current memory cell advantages: high dynamic range (with reduced supply voltage) precise current subtraction easy drivers not needed

FEE 2006, Perugia, Marcel Trimpl, University of Bonn /g S C G C BUS I input (independent of R) noise contribution time response switch optimizes time response noise vs. bandwidth minimize bus capacitance g m small, C g large, C BUS minor importance noise vs. time response

FEE 2006, Perugia, Marcel Trimpl, University of Bonn layout: two stage sampling cell 25 µm 40µm (+) improves linearity (non linearity due to charge injection) (-) more complex steering ! (all signals generated „on-chip“) calculated noise: ~ 25nA, bandwidth: 50MHz different designs: coarse stage: fast, noise does not contribute fine stage: „slower“, optimized for noise schematic: coarse sampling:

FEE 2006, Perugia, Marcel Trimpl, University of Bonn Linearity + Pedestal Subtraction linearity: pedestal subtraction: transfer gain: 1.00± 0.01 INL= 2,3 % (Integral Non Linearity) e.g. 5µA (10%) pedestal dispersion  75nA after pedestal subtraction all analog 24MHz line rate (sampling with 48MHz)

FEE 2006, Perugia, Marcel Trimpl, University of Bonn Noise & Dispersion noise: Dispersion: DEPFET r/o with CURO: ENC ~ 90 e - (g q =500pA/e - )  ~ 35nA after calibration dispersion < noise

FEE 2006, Perugia, Marcel Trimpl, University of Bonn fast hit-identification Address = 2, 6, (3) parallel tree architecture finds up to 2 hits per clock cycle propagation delay: 2 log(#channels) = 7 only ! serial hit finding clock > 2 GHz needed „aggressive“ even with 0.09 µm ! Hit-Finder: out back up down down_back up_back leaf („lower“ part) [P.Fischer]

FEE 2006, Perugia, Marcel Trimpl, University of Bonn Hit-Finder: Layout challenge: 128 leaves of the tree in linear layout 7 level  128 leaves 85µm 25 µm rad. tolerant design ! overall: 3200 x 85 µm 2

FEE 2006, Perugia, Marcel Trimpl, University of Bonn works fine up to: 110MHz total power consumption: digital tests:  250W for whole vtx-d (continuous operation) bunch structure 1 :199  pulsed mode (1:30) ~ 10W CURO II measurements (cont‘d) Hitscanner HIT-RAM serial-out hit-address: rowstamp, column Input-FIFO alternating testpattern w_clk s_clk s_ptr w w_clk counter rowstamp expected mean rate (1. layer): MHz

FEE 2006, Perugia, Marcel Trimpl, University of Bonn Current Readout CURO II Gate Switcher Clear Switcher DEPFET Matrix (450µm thick) 64x128 pixels, 36 x 28.5µm 2 ILC DEPFET-System USB 2.0 based digital interface board Analog board with ADCs, DAQ … Hybrid-PCB [H.Krüger, Bonn]

FEE 2006, Perugia, Marcel Trimpl, University of Bonn mm 3 mm ILC DEPFET-System in the lab irradiation with 55 Fe (6keV  1700 e - ) 75 µm thick Tungsten-Mask system performance: speed: line rate ~2 MHz noise: 220 e - (from noise peak) Integral-Non-Linearity = 0.75% for 8500e Am

FEE 2006, Perugia, Marcel Trimpl, University of Bonn noise contributions: system Sensor (shot noise) 8e - (50µs), 45e - (current r/o) (1/f noise) 1.6e - (after CDS) (thermal noise) 26e - (after CDS) SWITCHER (kT/C)0.92nA 3.3e - CURO (sampling) 45nA 160e - External transamp. 26.5nA 94e - total: ~190e - (measured ~220e - ) … thermal 1/f noise after CDS switching noise:

FEE 2006, Perugia, Marcel Trimpl, University of Bonn Test Beam Results Scintillator Telescope- Modules DEPFET System  Beam DESY, 6 GeV  Reference telescope: 4 Si-strip planes noise ~ 16 ADU S/N ~110 (450µm sensors !) position resolution: CERN test beam in August 2006 [J.J. Velthuis, Bonn]

FEE 2006, Perugia, Marcel Trimpl, University of Bonn zero suppressed matrix r/o works next CURO: neighbor logic zero suppressed matrix r/o lightspot of a desk lamp Hybrid with CMOS-Imager Matrix in AMS 0.35µm full analog frame zero suppressed analog readout [R.Kohrs, Bonn]

FEE 2006, Perugia, Marcel Trimpl, University of Bonn summary current based readout for DEPFETs established  CURO II fabricated in TSMC 0.25µm attributes: - pedestal subtraction  suppresses sensor inhomogeniety - fast correlated double sampling  suppresses 1/f noise - on chip hit-detection and zero suppression performance: - noise: < 45nA   160 e - (depending on DEPFET amplification) - analog speed: 24 MHz line rate (48MSPS), sufficient for ILC ! - hit-identification and 0-suppression : > 100MHz, sufficient for ILC ! DEPFET system: - operated at  2MHz line rate - detection of X-Rays (10…50keV): INL: 0.75% - 6GeV e - testbeam at DESY: S/N  110 (450µm sensors)

FEE 2006, Perugia, Marcel Trimpl, University of Bonn outlook CURO IIb: on-chip common mode computation/correction (easy with currents) cluster logic (keeping at least the closest neighbor) improve input cascode (readout larger matrices) implement (fast) power down feature (pulsed mode configuration) on chip ADC (IP from nordic semiconductor) System: increase system speed (2MHz  20MHz !!) reduce noise (190e - possible, next system should achieve <100e - ) References CURO / System: „Design of a current based readout chip and development of a DEPFET pixel prototype system for the ILC vertex detector“, PhD thesis, M.Trimpl, Thinning: „Processing of ultra thin silicon sensors for future linear collider experiments“, L.Andricek et al., IEEE TNS (51), No3, pp Sensor: „Design and Technology of DEPFET Pixel Sensors for Linear Collider Applicatons“, R.H.Richter, NIM A511, pp Rad Tolerance: „The MOS-type DEPFET Pixel Sensor for the ILC Environment“, L.Andircek et al., Pixel 2005, submitted to NIM (A)

FEE 2006, Perugia, Marcel Trimpl, University of Bonn Vorteil: - Null-Unterdrückung während Prozessierung einer Zeile - schnelles CDS (unterdrückt 1/f Rauschen) aber: - vollständiges „clear“ benötigt Auslesemodus: ILC ILC: kein „Trigger“  Null-Unterdrückung im Auslesechip „normal“ „ILC“

FEE 2006, Perugia, Marcel Trimpl, University of Bonn Processing thin detectors - the Idea - d) anisotropic etching from backside (TMAH) open backside passivation c) process  passivation b) wafer bonding and grinding/polishing of top wafer a) oxidation and back side implant of top wafer Handle Wafer Top Wafer wafer bonding:dummy samples:

FEE 2006, Perugia, Marcel Trimpl, University of Bonn source drain channel internal gate clear gate (Poly) clear (n + ) p-well high-E (some devices) DEPFET clear operation perpendicular to channelchannel view ‘clear gate’ to lower the clear barrier Clocked and static operation possible deep high-E n-implantation in some devices to lower clear voltages

FEE 2006, Perugia, Marcel Trimpl, University of Bonn vertexing at the ILC frame: ~300µm sensor: ~50µm high spatial resolution  small pixels 20-30µm radiation tolerance (>200krad ionizing rad.) 50µm thin detector (excellent impact parameter resolution) low power (row-wise operation) high e + e - background: 80 hits / (mm 2 train)  detector readout (inner layer) in 50 µs baseline vtx-d design: DEPFET ladder: ‘holes’ to save material Thinned silicon sample (size ~ ILC ladder) Estimated total material budget: 0.11% X 0 / layer