Dynamic Behavior of MOS Transistor. The Gate Capacitance t ox n + n + Cross section L Gate oxide x d x d L d Polysilicon gate Top view Gate-bulk overlap.

Slides:



Advertisements
Similar presentations
CMOS Fabrication EMT 251.
Advertisements

Lecture 0: Introduction
Simplified Example of a LOCOS Fabrication Process
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Digital Integrated Circuits A Design Perspective Manufacturing Process July 30, 2002.
CMOS Process at a Glance
VLSI Design Lecture 2: Basic Fabrication Steps and Layout
Fabrication of p-n junction in Si Silicon wafer [1-0-0] Type: N Dopant: P Resistivity: Ω-cm Thickness: µm.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 CMOS Process Manufacturing Process.
Introduction to CMOS VLSI Design Lecture 0: Introduction
Prelab: MOS gates and layout
Design and Implementation of VLSI Systems (EN1600) lecture04 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Sedra/Prentice.
Elettronica D. AA Digital Integrated Circuits© Prentice Hall 1995 Manufacturing Process CMOS Manufacturing Process.
Design and Implementation of VLSI Systems (EN0160) Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Sedra/Prentice Hall, Saint/McGrawHill,
Lecture #51 Lecture #5 – VLSI Design Review zPhotolithography zPatterning Silicon zProcess steps used are: yStarts with Si wafer yThermal oxidation yPhotoresist.
Paulo MoreiraTechnology1 Outline Introduction – “Is there a limit ?” Transistors – “CMOS building blocks” Parasitics I – “The [un]desirables” Parasitics.
CSE477 L05 IC Manufacturing.1Irwin&Vijay, PSU, 2002 CSE477 VLSI Digital Circuits Fall 2002 Lecture 05: IC Manufacturing Mary Jane Irwin (
Device Fabrication Example
Introduction Integrated circuits: many transistors on one chip.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process I Dr. Shiyan Hu Office: EERC 518 Adapted and modified from Digital Integrated.
Manufacturing Process
CMOS Process Integration ECE/ChE 4752: Microelectronics Processing Laboratory Gary S. May March 25, 2004.
ISAT 436 Micro-/Nanofabrication and Applications MOS Transistor Fabrication David J. Lawrence Spring 2001.
Patterning - Photolithography
Z. Feng VLSI Design 1.1 VLSI Design MOSFET Zhuo Feng.
Manufacturing Process
Module-3 (MOS designs,Stick Diagrams,Designrules)
CS/EE 6710 CMOS Processing. N-type Transistor + - i electrons Vds +Vgs S G D.
Metallization: Contact to devices, interconnections between devices and to external Signal (V or I) intensity and speed (frequency response, delay)
Lecture 0: Introduction. CMOS VLSI Design 4th Ed. 0: Introduction2 Introduction  Integrated circuits: many transistors on one chip.  Very Large Scale.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Chapter 2 Manufacturing Process March 7, 2003.
ECE484: Digital VLSI Design Fall 2010 Lecture: IC Manufacturing
Semiconductor Manufacturing Technology Michael Quirk & Julian Serda © October 2001 by Prentice Hall Chapter 9 IC Fabrication Process Overview.
Penn ESE370 Fall Townley & DeHon ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 5, 2011 Layout and.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
Introduction to CMOS VLSI Design CMOS Fabrication and Layout Harris, 2004 Updated by Li Chen, 2010.
Lecture 24a, Slide 1EECS40, Fall 2004Prof. White Lecture #24a OUTLINE Device isolation methods Electrical contacts to Si Mask layout conventions Process.
Fabrication Technology(1)
Digital Integrated Circuit Design
Introduction EE1411 Design Rules. EE1412 3D Perspective Polysilicon Aluminum.
Norhayati Soin 05 KEEE 4425 WEEK 8 2/9/2005 LECTURE 10: KEEE 4425 WEEK 8 CMOS FABRICATION PROCESS.
Norhayati Soin 05 KEEE 4426 WEEK 12/1 3/13/2005 KEEE 4426 WEEK 12 CMOS FABRICATION PROCESS.
STICK DIAGRAM EMT251. Schematic vs Layout In Out V DD GND Inverter circuit.
Introduction EE1411 Manufacturing Process. EE1412 What is a Semiconductor? Low resistivity => “conductor” High resistivity => “insulator” Intermediate.
Spencer/Ghausi, Introduction to Electronic Circuit Design, 1e, ©2003, Pearson Education, Inc. Chapter 3, slide 1 Introduction to Electronic Circuit Design.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Digital Integrated Circuits A Design Perspective Manufacturing Process Jan M. Rabaey Anantha Chandrakasan.
CMOS Fabrication nMOS pMOS.
IC Processing. Initial Steps: Forming an active region Si 3 N 4 is etched away using an F-plasma: Si3dN4 + 12F → 3SiF 4 + 2N 2 Or removed in hot.
IC Fabrication/Process
NMOS FABRICATION 1. Processing is carried out on a thin wafer cut from a single crystal of silicon of high purity into which the required p-impurities.
CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL DEPARTMENT OF ELECTRONICS & COMMUNICATIONS NMOS FABRICATION PROCESS - PROF. RAKESH K. JHA.
Digital Integrated Circuits A Design Perspective
1 Overview of Fabrication Processes of MOSFETs and Layout Design Rules.
CMOS VLSI Fabrication.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Digital Integrated Circuits A Design Perspective Manufacturing Process Jan M. Rabaey Anantha Chandrakasan.
CMOS FABRICATION.
EE141 Manufacturing 1 Chapter 2 Manufacturing Process and CMOS Circuit Layout 1 st rev. : March 7, nd rev. : April 10, 2003.
EE141 © Digital Integrated Circuits 2nd Manufacturing 1 Manufacturing Process Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated.
Patterning - Photolithography
CMOS Fabrication EMT 251.
CSE477 L05 IC Manufacturing.1Irwin&Vijay, PSU, 2003 CSE477 VLSI Digital Circuits Fall 2003 Lecture 05: IC Manufacturing Mary Jane Irwin (
Lecture 2 State-of-the art of CMOS Technology
IC Manufactured Done by: Engineer Ahmad Haitham.
CMOS Fabrication CMOS transistors are fabricated on silicon wafer
Manufacturing Process I
Chapter 1 & Chapter 3.
VLSI System Design LEC3.1 CMOS FABRICATION REVIEW
Digital Integrated Circuits A Design Perspective
Lecture #25 OUTLINE Device isolation methods Electrical contacts to Si
Manufacturing Process I
Manufacturing Process I
Presentation transcript:

Dynamic Behavior of MOS Transistor

The Gate Capacitance t ox n + n + Cross section L Gate oxide x d x d L d Polysilicon gate Top view Gate-bulk overlap Source n + Drain n + W

Gate Capacitance Cut-off ResistiveSaturation Most important regions in digital design: saturation and cut-off

Gate Capacitance Capacitance as a function of VGS (with VDS = 0) Capacitance as a function of the degree of saturation

Measuring the Gate Cap

Diffusion Capacitance Bottom Side wall Channel Source N D Channel-stop implant N A 1 SubstrateN A W x j L S

CMOS Process at a Glance Define active areas Etch and fill trenches Implant well regions Deposit and pattern polysilicon layer Implant source and drain regions and substrate contacts Create contact and via windows Deposit and pattern metal layers  One full photolithography sequence per layer (mask)  Built (roughly) from the bottom up 5 metal 2 4 metal 1 2 polysilicon 3 source and drain diffusions 1 tubs (aka wells, active areas)

oxidation optical mask process step photoresist coating photoresist removal (ashing) spin, rinse, dry acid etch photoresist development stepper exposure Photolithographic Process

Patterning - Photolithography 1.Oxidation 2.Photoresist (PR) coating 3.Stepper exposure 4.Photoresist development and bake 5.Acid etching Unexposed (negative PR) Exposed (positive PR) 6.Spin, rinse, and dry 7.Processing step Ion implantation Plasma etching Metal deposition 8.Photoresist removal (ashing) mask SiO 2 PR UV light

Example of Patterning of SiO2 Si-substrate Silicon base material 1&2. After oxidation and deposition of negative photoresist Photoresist SiO 2 Si-substrate SiO 2 8. Final result after removal of resist Si-substrate SiO 2 5. After etching Hardened resist SiO 2 Si-substrate 4. After development and etching of resist, chemical or plasma etch of SiO 2 Hardened resist Chemical or plasma etch

Diffusion and Ion Implantation 1.Area to be doped is exposed (photolithography) 2.Diffusion or Ion implantation

Deposition and Etching 1.Pattern masking (photolithography) 2.Deposit material over entire wafer CVD (Si 3 N 4 ) chemical deposition (polysilicon) sputtering (Al) 3.Etch away unwanted material wet etching dry (plasma) etching

Self-Aligned Gates 1.Create thin oxide in the “active” regions, thick elsewhere 2.Deposit polysilicon 3.Etch thin oxide from active region (poly acts as a mask for the diffusion) 4.Implant dopant

Simplified CMOS Inverter Process cut line p well

P-Well Mask

Active Mask

Poly Mask

P+ Select Mask

N+ Select Mask

Contact Mask

Metal Mask

A Modern CMOS Process p- p-epi p welln well p+n+ gate oxide Al (Cu) tungsten SiO 2 TiSi 2 Dual-Well Trench-Isolated CMOS field oxide

Modern CMOS Process Walk-Through p + p-epi Base material: p+ substrate with p-epi layer p+ After plasma etch of insulating trenches using the inverse of the active area mask p + p-epi SiO 2 3 SiN 4 After deposition of gate-oxide and sacrifical nitride (acts as a buffer layer)

CMOS Process Walk-Through, con’t SiO 2 After trench filling, CMP planarization, and removal of sacrificial nitride After n-well and V Tp adjust implants n After p-well and V Tn adjust implants p

CMOS Process Walk-Through, con’t After polysilicon deposition and etch poly(silicon) After n+ source/dram and p+ source/drain implants. These steps also dope the polysilicon. p + n+

CMOS Process Walk-Through, con’t

Layout Editor: VIRTUOSO

Layer Map  Metals (seven) and vias/contacts between the interconnect levels l Note that m5 connects only to m4, m4 only to m3, etc., and m1 only to poly, ndif, and pdif l Some technologies support “stacked vias”  Active – active areas on/in substrate (poly gates, transistor channels (nfet, pfet), source and drain diffusions (ndif, pdif), and well contacts (nwc, pwc))  Wells (nw) and other select areas (pplus, nplus, prb)

CMOS Inverter Layout V DD GND NMOS (.24/.06 = 4/1) PMOS (.48/.06 = 12/1) metal2 metal1 polysilicon In Out metal1-poly via metal2-metal1 via or Contact metal1-diff via pfet nfet pdif ndif

Simplified Layouts  Calibre for design rule checking (DRC)  FET generation (just overlap poly and diffusion and it creates a transistor)  Simplified via/contact generation l Use the CO (contact) drawing layer l M2X_M1, M3X_M2, M4X_M3, M5X_M x 0.44 m1 0.3 x 0.3 ct 0.44 x 0.44 poly

Design Rule Checker

Design Rules  Interface between the circuit designer and process engineer  Guidelines for constructing process masks  Unit dimension: minimum line width l scalable design rules: lambda parameter l absolute dimensions: micron rules  Rules constructed to ensure that design works even when small fab errors (within some tolerance) occur  A complete set includes l set of layers l intra-layer: relations between objects in the same layer l inter-layer: relations between objects on different layers

Why Have Design Rules?  To be able to tolerate some level of fabrication errors such as 1.Mask misalignment 2.Dust 3.Process parameters (e.g., lateral diffusion) 4.Rough surfaces

Intra-Layer Design Rule Origins  Minimum dimensions (e.g., widths) of objects on each layer to maintain that object after fab l minimum line width is set by the resolution of the patterning process (photolithography)  Minimum spaces between objects (that are not related) on the same layer to ensure they will not short after fab micron

Inter-Layer Design Rule Origins 1. Transistor rules – transistor formed by overlap of active and poly layers Transistors Catastrophic error Unrelated Poly & Diffusion Thinner diffusion, but still working