Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.

Slides:



Advertisements
Similar presentations
IEEE Device Research Conference, June , Notre Dame
Advertisements

Improved Migration-Enhanced Epitaxy for Self-Aligned InGaAs Devices Electronic Materials Conference (EMC), Mark A. Wistey University of California,
Spring 2007EE130 Lecture 41, Slide 1 Lecture #41 QUIZ #6 (Friday, May 4) Material of HW#12 & HW#13 (Lectures 33 through 38) –MOS non-idealities, V T adjustment;
High-K Dielectrics The Future of Silicon Transistors
Lateral Asymmetric Channel (LAC) Transistors
Zhang Xintong 11/26/2014 Process technologies for making FinFETs.
2007 DRC Ultra Low Resistance Ohmic Contacts to InGaAs/InP Uttam Singisetti*, A.M. Crook, E. Lind, J.D. Zimmerman, M. A. Wistey, M.J.W. Rodwell, and A.C.
1 InGaAs/InP DHBTs demonstrating simultaneous f t / f max ~ 460/850 GHz in a refractory emitter process Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian.
Device Research Conference 2011
In-situ and Ex-situ Ohmic Contacts To Heavily Doped p-InGaAs TLM Fabrication by photolithography and liftoff Ir dry etched in SF 6 /Ar with Ni as etch.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
NAMBE 2010 Ashish Baraskar, UCSB 1 In-situ Iridium Refractory Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain, Evan Lobisser, Brian Thibeault,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
IPRM 2010 Ashish Baraskar 1 High Doping Effects on in-situ Ohmic Contacts to n-InAs Ashish Baraskar, Vibhor Jain, Uttam Singisetti, Brian Thibeault, Arthur.
Ashish Baraskar 1, Mark A. Wistey 3, Evan Lobisser 1, Vibhor Jain 1, Uttam Singisetti 1, Greg Burek 1, Yong Ju Lee 4, Brian Thibeault 1, Arthur Gossard.
2010 Electronic Materials Conference Ashish Baraskar June 23-25, 2010 – Notre Dame, IN 1 In-situ Ohmic Contacts to p-InGaAs Ashish Baraskar, Vibhor Jain,
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell.
1 Interface roughness scattering in ultra-thin GaN channels in N-polar enhancement-mode GaN MISFETs Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh.
1 In 0.53 Ga 0.47 As MOSFETs with 5 nm channel and self-aligned source/drain by MBE regrowth Uttam Singisetti PhD Defense Aug 21, 2009 *
Optional Reading: Pierret 4; Hu 3
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
Advanced Process Integration
Basic MOSFET I-V characteristic(1/3) High circuit operation speed  large I ON small Subthreshold Slope (SS) Low power consumption  small I OFF (Silicon-on-insulator.
Leakage current of device HEMT versus MOSFET 이진식.
Introduction to FinFet
Szu-Wei Huang, C-V Lab, GIEE of NTU 1 黃 思 維 F Graduate Institute of Electronics Engineering National Taiwan University Advanced Multi-Gate Technologies.
Nanometer InP Electron Devices for VLSI and THz Applications
III-V HBT and (MOS) HEMT scaling
Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS.
© 2008, Reinaldo Vega UC Berkeley Top-Down Nanowire and Nano- Beam MOSFETs Reinaldo Vega EE235 April 7, 2008.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
III-V/Ge Channel Engineering for Future CMOS
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
2009 Electronic Materials Conference Ashish Baraskar June 24-26, 2009 – University Park, PA 1 High Doping Effects on In-situ and Ex-situ Ohmic Contacts.
Technology Development for InGaAs/InP-channel MOSFETs
Novel Metal-Oxide-Semiconductor Device
University of California, Santa Barbara
Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at.
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
C. Kadow, J.-U. Bae, M. Dahlstrom, M. Rodwell, A. C. Gossard *University of California, Santa Barbara G. Nagy, J. Bergman, B. Brar, G. Sullivan Rockwell.
III-V MOS: Planar and Fin Technologies 2014 MRS Spring Meeting, April 23, San Francisco. M.J.W. Rodwell, UCSB III-V MOS: S. Lee, C.-Y. Huang, D. Elias,
UTB SOI for LER/RDF EECS Min Hee Cho. Outline  Introduction  LER (Line Edge Roughness)  RDF (Random Dopant Fluctuation)  Variation  Solution – UTB.
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
Indium Phosphide and Related Materials
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
1 High-Performance Schottky Barrier MOSFET Horng-Chih Lin Department of Electronics Engineering & Institute of Electronics National Chiao Tung University.
Guided by: Prof.J.D.PRADHAN Submitted By: K.Anurag Regn no:
Tunnel FETs Peng Wu Mar 30, 2017.
Making better transistors: beyond yet another new materials system
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Lower Limits To Specific Contact Resistivity
Device Research Conference, June 19, 2012
Metal Semiconductor Field Effect Transistors
Contact Resistance Modeling in HEMT Devices
High Transconductance Surface Channel In0. 53Ga0
INTRODUCTION: MD. SHAFIQUL ISLAM ROLL: REGI:
PHYSICS OF SEMICONDUCTOR DEVICES II
Nanowire Gate-All-Around (GAA) FETs
Optional Reading: Pierret 4; Hu 3
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Beyond Si MOSFETs Part 1.
Presentation transcript:

Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana 3, Brian Thibeault 1, William Mitchell 1, Susanne Stemmer 3, Arthur Gossard 1,3, Errol Sanchez 2, and Mark Rodwell 1 1 ECE, University of California, Santa Barbara 2 Applied Materials, Santa Clara 3 Materials Department, University of California, Santa Barbara VLSI-TSA 2015 HsinChu, Taiwan

Why InGaAs/InAs FETs? III-V channel: low electron effective mass, high velocity, high mobility  higher current at lower V DD Problems: -Devices: low bandgap  high BTBT leakage high permittivity  worse electrostatics, large SS and DIBL - Materials: Integration of III-V on Si, High-K dielectrics on III-V Goal: Fabricate ultrathin channel III-V FETs on Si 2 C. Huang et al., DRC 2014

Record III-V FETs on InP substrates S. Lee et al., VLSI Vertical Spacer N+ S/D

MOSFET: 2.5nm ZrO 2 / 1nm Al 2 O 3 / 2.5nm InAs 61 mV/dec Subthreshold swing at V DS =0.1 V Negligible hysteresis 4

Applied Materials III-V buffer on Si R q =3.1 nm RHEED in MBE 5

UCSB III-V FET epitaxy R q = 6.9 nm Surface roughness is degraded after FET epitaxy. 6

UCSB Gate Last Process Flow 7 Channel HfO 2 III-V Barrier Si substrate N+ S/D Isolation Strip dummy gate Digital etch Deposit dielectric FGA anneal Channel Ni III-V Barrier Si substrate N+ S/D Lift-off gate metal Channel Ni III-V Barrier Si substrate N+ S/D Ti/Pd/Au Deposit S/D contacts Channel HSQ III-V Barrier Si substrate Pattern dummy gate Channel III-V Barrier Si substrate MBE/MOCVD grown device epilayer Channel HSQ III-V Barrier Si substrate N+ S/D MOCVD source/drain regrowth

TEM images of III-V FET on Si Lg~20nm 8

Short gate length: L g -20 nm High G m ~2.0 mS/μm at V D =0.5 V. SS~140 mV/dec. at V D =0.5 V and 101 mV/dec. at V D =0.1 V High I on >1.4 mA/um at V GS =1V. 9

SS~74 mV/dec. for L g -1 μm devices. Off-state leakage dominated by band-to-band tunneling. Negligible buffer leakage. Long gate length: L g -1 μm 10

On-state characteristics Long L g devices show similar G m to record FETs  comparable mobility to 2.5 nm InAs on InP. ~25% degradation on S/D sheet resistance and contact resistance. Thicker channel and degraded R S/D decrease G m at short L g. 11

Subthreshold Characteristics SS and DIBL are degraded due to thicker channel. Higher SS at long L g : higher interface trap density. 12

Within-wafer uniformity:L g -45nm devices G m ~1.82 mS/μm SS~123 mV/dec 13

Benchmark of III-V FETs on Si Further improved material quality reduces R on and increases I on. Further improved surface roughness allows further thinning the channel, and improves C g, SS and I on. I on I off 14

Summary 15 Demonstrated high performance, and high yield III-V UTB-FETs on Si substrates using the combination of MOCVD and MBE growth, featuring 3.5~4 nm ultrathin channel and L g ~20 nm. Achieved high G m ~ 2.0 mS/μm at V D =0.5V and high I on ~1.4 mA/m at V GS =1V and L g ~20 nm. Improving channel surface roughness will allow further channel thickness scaling, and improve SS and I on. Improving material quality will reduce R on and increase G m and I on. Thank you! Question?

(backup slides follow)

Within-wafer uniformity: V th of Lg-45 nm devices V t, lin 1 μA/μm, V DS =0.1V 20 mm 12 mm A B C mm 12 mm A B C V t,sat 1 μA/μm, V DS =0.5V

Hero device: VLSI 2014 late news (Sanghoon Lee) Courtesy of Sanghoon Lee (UCSB) 18

Reducing leakage (3): Ultra-thin channel 19 S. Lee et al., VLSI 2014 Record III-V MOS

MOSFET: 2.5nm ZrO 2 / 1nm Al 2 O 3 / 2.5nm InAs 61 mV/dec Subthreshold swing at V DS =0.1 V Negligible hysteresis 20

Compared to Intel 14nm finFET I off =10nA/  m, I on =0.45mA/  DS =0.5V per  m of fin footprint Re-normalizing to fin periphery: ~0.24 mA/  m S. Natarajan et al, IEDM 2014, December, San Francisco 21

Reducing leakage (5): Recessed InP S/D spacer nm InGaAs spacer5 nm Recessed InP spacer L g -60 nm C-Y Huang, 2014 Les Eastman Conference

Reducing leakage (6): Doping-graded InP spacer Doping-graded InP spacer reduces parasitic source/drain resistance and improves G m. Gate leakage limits I off ~300 pA/μm. 23 R on at zero L g (Ω∙μm) 5 nm UID InP 13 nm UID InP Doping graded InP ~199~364~270 L g -30 nm, 30Å ZrO 2 C-Y Huang, 2014 IEDM

Reducing leakage (7): Thicker Dielectric Minimum I off ~ 60 pA/μm at V D =0.5V for L g -30 nm 100:1 smaller I off compared to InGaAs spacer InP graded spacer pA/μm 38Å ZrO 2 InGaAs spacer C-Y Huang, 2014 IEDM