Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH - 1 -  MAPS technology decoupled charge sensing and signal transfer (improved radiation.

Slides:



Advertisements
Similar presentations
January US LC Workshop SLAC – Chris Damerell 1 Strategies for pickup and noise suppression with different vertex detector technologies Chris Damerell.
Advertisements

Wojciech Dulinski BNL/IReS/LEPSI STAR Video Conference, MIMOSA9 tracker test chip submission Goals: design optimization.
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Random Telegraph Signal (RTS) in CMOS Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline Reminder: The operation principle of.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
 SLIM - MimoTERA – chip design MimoTera:  AMS CUA 0.6 µm CMOS process with 14 µm epitaxial layer – (MIMOSA V),  Chip size: 17350×19607µm 2,  delivery.
6 th International Conference on Position Sensitive Detectors, Leicester 11/09/2002 Yu.Gornushkin Outline: G. Claus, C.
FSBB-M and FSBB-A: Two Large Scale CMOS Pixel Sensors Building Blocks Developed for the Upgrade of the Inner Tracking System of the ALICE Experiment Frédéric.
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
Status of the Micro Vertex Detector M. Deveaux, Goethe University Frankfurt for the CBM-MVD collaboration.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
15-17 December 2003ACFA workshop, Mumbai - A.Besson R&D on CMOS sensors Development of large CMOS Sensors Characterization of the technology without epitaxy.
Wojciech Dulinski Mimosa-18 (High Resolution Tracker) IPHC, 23 rue du Loess BP 28, 67037, Strasbourg Cedex 02, France Mini.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
1 Improved Non-Ionizing Radiation Tolerance of CMOS Sensors Dennis Doering 1 *, Michael Deveaux 1, Melissa Domachowski 1, Michal Koziel 1, Christian Müntz.
November 2003ECFA-Montpellier 1 Status on CMOS sensors Auguste Besson on behalf of IRES/LEPSI: M. Deveaux, A. Gay, G. Gaycken, Y. Gornushkin, D. Grandjean,
Device simulation of CMOS Pixel Sensors with synopsys
First Results from Cherwell, a CMOS sensor for Particle Physics By James Mylroie-Smith
The ALICE Silicon Pixel Detector Gianfranco Segato Dipartimento di Fisica Università di Padova and INFN for the ALICE Collaboration A barrel of two layers.
Status of the R&D on MAPS in Strasbourg and Frankfurt Outline: Operation principle of MAPS (a reminder) Fast readout Radiation hardness System integration.
Semi-conductor Detectors HEP and Accelerators Geoffrey Taylor ARC Centre for Particle Physics at the Terascale (CoEPP) The University of Melbourne.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
LCFI Collaboration Status Report LCUK Meeting Oxford, 29/1/2004 Joel Goldstein for the LCFI Collaboration Bristol, Lancaster, Liverpool, Oxford, QMUL,
High-resolution, fast and radiation-hard silicon tracking station CBM collaboration meeting March 2005 STS working group.
1 Radiation damage effects in Monolithic Active Pixel Sensors Implemented in an 0.18µm CMOS process Dennis Doering, Goethe-University Frankfurt am Main.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 An introduction to radiation hard Monolithic Active Pixel Sensors Or: A tool to measure Secondary Vertices Dennis Doering*, Goethe University Frankfurt.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Tobias Haas DESY 8 November 2005 A Pixel Telescope for Detector R&D for an ILC Introduction: EUDET Introduction: EUDET First general ideas (with some interludes)
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
J. Crooks STFC Rutherford Appleton Laboratory
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
1 Radiation Hardness of Monolithic Active Pixel Sensors Dennis Doering, Goethe-University Frankfurt am Main on behalf of the CBM-MVD-Collaboration Outline.
Monolithic Active Pixel Sensors (MAPS) News from the MIMOSA serie Pierre Lutz (Saclay)
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Irfu saclay Development of fast and high precision CMOS pixel sensors for an ILC vertex detector Christine Hu-Guo (IPHC) on behalf of IPHC (Strasbourg)
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
A Fast Monolithic Active Pixel Sensor with in Pixel level Reset Noise Suppression and Binary Outputs for Charged Particle Detection Y.Degerli 1 (Member,
Improvement of ULTIMATE IPHC-LBNL September 2011 meeting, Strasbourg Outline  Summary of Ultimate test status  Improvement weak points in design.
FEE2006, Perugia, MAY Grzegorz DEPTUCH Grzegorz Deptuch  Introduction to beam monitor Design and test results of MAPS.
COMETH*: a CMOS pixel sensor for a highly miniaturized high-flux radiation monitor Yang ZHOU, Jérôme Baudot, Christine Hu-Guo, Yann Hu, Kimmo Jaaskelainen,
CMS Pixels: Fermilab Farah Fahim, Gregory Deptuch, Jim Hoff, Alpana Shenai, Marcel Trimpl.
W. Kucewicz a, A. A.Bulgheroni b, M. Caccia b, P. Grabiec c, J. Marczewski c, H.Niemiec a a AGH-Univ. of Science and Technology, Al. Mickiewicza 30,
CMOS Sensors WP1-3 PPRP meeting 29 Oct 2008, Armagh.
WG3 – STRIP R&D ITS - COMSATS P. Riedler, G. Contin, A. Rivetti – WG3 conveners.
Progress with GaAs Pixel Detectors K.M.Smith University of Glasgow Acknowledgements: RD8 & RD19 (CERN Detector R.&D. collaboration) XIMAGE (Aixtron, I.M.C.,
Eleuterio SpiritiILC Vertex Workshop, April On pixel sparsification architecture in 130nm STM technology ILC Vertex Workshop April 2008 Villa.
Monolithic Pixel R&D at LBNL M Battaglia UC Berkeley - LBNL Universite' Claude Bernard – IPN Lyon Monolithic Pixel Meeting CERN, November 25, 2008 An R&D.
MISTRAL & ASTRAL: Two CMOS Pixel Sensor Architectures dedicated to the Inner Tracking System of the ALICE Experiment R&D strategy with two main streams.
STAR meeting, June 2009, Strasbourg A. Dorokhov, IPHC, Strasbourg, France 1 Improved radiation tolerance of MAPS using a depleted epitaxial layer.
Ideas for a new INFN experiment on instrumentation for photon science and hadrontherapy applications – BG/PV group L. Ratti Università degli Studi di Pavia.
Elena Rocco Nikhef, The Netherlands On behalf of the ALICE Utrecht-Nikhef group Jamboree – Utrecht December 2012.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Progress with GaAs Pixel Detectors
3D CMOS monolithic 3-bit resolution pixel sensor with fast digital pipelined readout Olav Torheim, Yunan Fu, Christine Hu-Guo, Yann Hu, Marc Winter.
Dima Maneuski, Advances in rad-hard MAPS 2016, Birmingham
Silicon eyes for radio-labeled biological samples
Application of VATAGP7 ASICs in the Silicon detectors for the central tracker (forward part) S. Khabarov, A. Makankin, N. Zamiatin, ,
DESY contributions to MAPS DESY testbeam
First Testbeam results
Radiation tolerance of MAPS
Rita De Masi IPHC-Strasbourg on behalf of the IPHC-IRFU collaboration
SCIENTIFIC CMOS PIXELS
HVCMOS Detectors – Overview
Mimosa18 on PCB (from the chip side)
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
R&D of CMOS pixel Shandong University
Presentation transcript:

Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MAPS technology decoupled charge sensing and signal transfer (improved radiation tolerance, random access, etc.), small pitch (high tracking precision), low amount of material, fast readout, moderate price, SoC, etc. advantages:

Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MIMOSA V 1×10 6 pixel device  0.6 µm CMOS process with 14 µm epitaxial layer,  4 matrices of 512 × 512 pixels read-out in parallel; pixel: 17 × 17 µm 2, diodes: P pm 2, P pm 2, control logic and all pads aligned along one side, results: Noise mean ENC: e - detection efficiency MIPs (  ): 99.3% spatial resolution MIPs (  ): 1.7 µm pixel-pixel gain nonuiformity ~3% MIMOSA V  Chip-Detector design MIMOSA = Minimum Ionising Particle MOS APS 3T design Chip design not optimised for any particular application, aimed at relativistic charged particle detection - DESIGNED in joined IReS- LEPSI effort in 2001

Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  Architecture of the prototype  Matrix of sequentially addressed pixels, multiplexed on single output buffer.  MIMOSA V 1×10 6 pixel device

Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  MIMOSA V 1×10 6 pixel device  Default Readout Method  Readout time = Integration time ~8 40 MHz f clk.

Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  back-side illuminated MIMOSAV – fabrication

Strasbourg, France, 17 December, 2004, seminairGrzegorz DEPTUCH  back-side illuminated MIMOSA V - mounting  Back-side illuminated thinned M5 device – a test vehicle for demonstration of 20 keV E - detection capability for Beam Monitoring system and other affined applications Bonding pads 85×85 µm 2 inside 10 µm deep wells positive response from microbonding sa - idea of use Au ball-bonding technique – not successful because of pad cratering finally 17 µm Al wedge bonding with special deep wedge was used