Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 1 ECE 747 Digital Signal Processing Architecture SoC Lecture – Normalized Comparison of Architectures.

Slides:



Advertisements
Similar presentations
Transistors (MOSFETs)
Advertisements

Elettronica T A.A Digital Integrated Circuits © Prentice Hall 2003 Inverter CMOS INVERTER.
Penn ESE534 Spring Mehta & DeHon 1 ESE534 Computer Organization Day 6: February 12, 2014 Energy, Power, Reliability.
Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 1 ECE 747 Digital Signal Processing Architecture SoC Lecture – Working with Analog-to-Digital.
Spring 2009W. Rhett DavisNC State UniversityECE 406Slide 1 ECE 406 – Design of Complex Digital Systems Lecture 21: Where do you go from here? Spring 2009.
Caltech CS184a Fall DeHon1 CS184a: Computer Architecture (Structures and Organization) Day6: October 11, 2000 Instruction Taxonomy VLSI Scaling.
Fall 06, Sep 19, 21 ELEC / Lecture 6 1 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic.
Copyright Agrawal & Srivaths, 2007 Low-Power Design and Test, Lecture 2 1 Low-Power Design and Test Dynamic and Static Power in CMOS Vishwani D. Agrawal.
8/29/06 and 8/31/06 ELEC / Lecture 3 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5970/6970) Low Voltage.
Copyright Agrawal, 2007 ELEC5270/6270 Spring 09, Lecture 4 1 ELEC / Spring 2009 Low-Power Design of Electronic Circuits Power Dissipation.
Dec. 1, 2005ELEC Class Presentation1 Impact of Pass-Transistor Logic (PTL) on Power, Delay and Area Kalyana R Kantipudi ECE Department Auburn.
CS294-6 Reconfigurable Computing Day4 September 3, 1998 VLSI Scaling.
Spring 07, Feb 20 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Reducing Power through Multicore Parallelism Vishwani.
8/22/06 and 8/24/06 ELEC / Lecture 2 1 ELEC / (Fall 2006) Low-Power Design of Electronic Circuits (ELEC 5270/6270) Power.
Copyright Agrawal, 2007 ELEC6270 Fall 07, Lecture 5 1 ELEC 5270/6270 Fall 2007 Low-Power Design of Electronic Circuits Low Voltage Low-Power Devices Vishwani.
Penn ESE Spring DeHon 1 ESE (ESE534): Computer Organization Day 6: January 29, 2007 VLSI Scaling.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 18: Scaling Theory Prof. Sherief Reda Division of Engineering, Brown University.
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
Lecture #25a OUTLINE Interconnect modeling
Micro-Architecture Techniques for Sensor Network Processors Amir Javidi EECS 598 Feb 25, 2010.
8/23-25/05ELEC / Lecture 21 ELEC / (Fall 2005) Special Topics in Electrical Engineering Low-Power Design of Electronic Circuits.
Spring 2007EE130 Lecture 39, Slide 1 Lecture #39 ANNOUNCEMENTS Late projects will be accepted –by 1:10PM Monday 4/30: 20 pt penalty –by 1:10PM Friday 5/4:
Power-Aware Computing 101 CS 771 – Optimizing Compilers Fall 2005 – Lecture 22.
Comparing Computing Machines Dr. André DeHon UC Berkeley November 3, 1998.
EGRE 427 Advanced Digital Design Figures from Application-Specific Integrated Circuits, Michael John Sebastian Smith, Addison Wesley, 1997 Chapter 3 ASIC.
ECE 331 – Digital System Design Power Dissipation and Additional Design Constraints (Lecture #14) The slides included herein were taken from the materials.
Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 1 ECE 747 Digital Signal Processing Architecture SoC Lecture – Working with DRAM April 3, 2007.
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
Robust Low Power VLSI R obust L ow P ower VLSI Finding the Optimal Switch Box Topology for an FPGA Interconnect Seyi Ayorinde Pooja Paul Chaudhury.
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
Mary Jane Irwin ( ) Modified by Dr. George Engel (SIUE)
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 12: September 24, 2014 MOS Transistor.
EZ-COURSEWARE State-of-the-Art Teaching Tools From AMS Teaching Tomorrow’s Technology Today.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 16, 2013 Energy and Power.
Crosstalk Analysis in UDSM technologies
Determining the Optimal Process Technology for Performance- Constrained Circuits Michael Boyer & Sudeep Ghosh ECE 563: Introduction to VLSI December 5.
Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction.
Device Physics – Transistor Integrated Circuit
Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 1 ECE 747 Digital Signal Processing Architecture SoC Lecture – SoC Simulation Strategy ECE 747.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 19: October 15, 2014 Energy and Power.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 6, 2010 Scaling.
Basics of Energy & Power Dissipation Lecture notes S. Yalamanchili, S. Mukhopadhyay. A. Chowdhary.
1 EE 587 SoC Design & Test Partha Pande School of EECS Washington State University
CBSSS 2002: DeHon Costs André DeHon Wednesday, June 19, 2002.
Design of a 32-Bit Hybrid Prefix-Carry Look-Ahead Adder
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
Basics of Energy & Power Dissipation
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 6: January 19, 2005 VLSI Scaling.
HO #3: ELEN Review MOS TransistorsPage 1S. Saha Long Channel MOS Transistors The theory developed for MOS capacitor (HO #2) can be directly extended.
Day 16: October 6, 2014 Inverter Performance
© Digital Integrated Circuits 2nd Inverter Digital Integrated Circuits A Design Perspective The Inverter Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Trends in IC technology and design J. Christiansen CERN - EP/MIC
FPGA-Based System Design: Chapter 2 Copyright  2004 Prentice Hall PTR Topics n Logic gate delay. n Logic gate power consumption. n Driving large loads.
MOSFET Current Voltage Characteristics Consider the cross-sectional view of an n-channel MOSFET operating in linear mode (picture below) We assume the.
Caltech CS184 Winter DeHon 1 CS184a: Computer Architecture (Structure and Organization) Day 6: January 22, 2003 VLSI Scaling.
1 Very Low Voltage Operation of Benchmark Circuit c6288 Presented By: - Murali Dharan.
Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 1 ECE 747 Digital Signal Processing Architecture SoC Lecture – Working with Buses & Interconnects.
Penn ESE534 Spring DeHon 1 ESE534 Computer Organization Day 19: March 28, 2012 Minimizing Energy.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 15: October 3, 2014 Scaling.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 4: September 12, 2012 Transistor Introduction.
CS203 – Advanced Computer Architecture
LOW POWER DESIGN METHODS
M V Ganeswara Rao Associate Professor Dept. of ECE Shri Vishnu Engineering College for Women Bhimavaram Hardware Architecture of Low-Power ALU using Clock.
CS203 – Advanced Computer Architecture
The MOS Transistor Figures from material provided with Digital Integrated Circuits, A Design Perspective, by Jan Rabaey, Prentice Hall, 1996.
LOW POWER DESIGN METHODS V.ANANDI ASST.PROF,E&C MSRIT,BANGALORE.
Circuits and Interconnects In Aggressively Scaled CMOS
CSV881: Low-Power Design Multicore Design for Low Power
Circuit Design Techniques for Low Power DSPs
Presentation transcript:

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 1 ECE 747 Digital Signal Processing Architecture SoC Lecture – Normalized Comparison of Architectures April 11, 2007 W. Rhett Davis NC State University

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 2 Today’s Lecture l Introduction Scaling down to 1.0  m Scaling from 1.0  m down to 0.35  m Scaling from 0.6  m to 0.35  m Scaling Beyond 0.35  m (the figures in this lecture are from André DeHon [1])

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 3 Confusion about Architecture l Confusion over Wild Claims » 10x – 1000x benefit, penalty » Area, Throughput, Energy/Power » Example: SPLASH-2 (FPGA): 6x faster than custom logic!!! l Should we drop ASICs and use FPGA’s? l How do we know if one architecture is really better than another?

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 4 Clearing up the Confusion l STEP 1: Implement computation each way l STEP 2: Assess results l STEP 3: Generalize lessons l Today’s talk is about step 2

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 5 Computational Efficiency Metrics l Definition: MOPS » Millions of algorithmically defined arithmetic operations (e.g. multiply, add, shift) – in a GP processor several instructions per “useful” operation l Figures of merit » MOPS/mW - Energy efficiency (battery life) » MOPS/mm 2 - Area efficiency (cost) Optimization of these “efficiencies” is the basic goal assuming functionality is met

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 6 Types of Scaling l Fixed-Voltage Scaling [3]: » Dimensions are scaled, supply-voltage and threshold voltages held constant » Used for technology generations > 0.6 μm l Constant Electric-Field (or “Full”) Scaling [3]: » Dimensions, supply-voltage, and threshold-voltages are scaled » Used for technology dimensions from 0.6 μm to μm » Approach used by this lecture l General Scaling [3]: » Dimensions scaled by a different factor than supply-voltages and threshold voltages » Necessary because leakage becomes a problem if voltages continue to scale at the same rate » Will probably needed to accurately compare devices smaller than μm

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 7 Common Supply Voltages Feature SizeSupply Voltages > 0.6 μm5 V 0.6 μm5 V – 3.3 V 0.35 μm3.3 V – 2.5 V 0.25 μm2.5 V – 1.8 V 0.18 μm1.8 – 1.2 V 0.13 μm1.2 – 1.0 V μm1.0 – 0.9 V μm? (assume ~0.65 V) μm? (assume ~0.45 V)

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 8 Today’s Lecture l Introduction Scaling down to 1.0  m Scaling from 1.0  m down to 0.35  m Scaling from 0.6  m to 0.35  m Scaling Beyond 0.35  m (the figures in this lecture are from André DeHon [1])

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 9 Scaling down to 1.0  m l Premise: features scale “uniformly” » everything gets better in a predictable manner l Parameters: »λ (lambda) = 1/2 Tg – Mead and Conway » S – Bohr » 1/  – Dennard

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 10 Feature Size

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 11 Scaling Channel Length (L) Channel Width (W) Oxide Thickness (T ox )

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 12 Effects? l Area l Capacitance l Current (I d ) Gate Delay (  gd ) l Dynamic Power l Static Power

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 13 Area  →   L * W  →    m  m l 50% area l 2x capacity same area

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 14 Area Perspective

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 15 Capacitance l Capacitance per unit area » C ox =  SiO 2 /T ox » T ox →  T ox /  » C ox →  C ox

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 16 Capacitance l Gate Capacitance » C gate = A*C ox »A  →  A   » C ox →  C ox » C gate →  C gate / 

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 17 Current l Saturation Current » I d =(  C OX /2)(W/L)(V gs -V TH ) 2 » V gs= V →  V » V T →  V T » W →  W  » L →  L  » C ox →  C ox » I d →  I d

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 18 Gate Delay  gd =Q/I=(CV)/I V →  V I d →  I d C →  C /   gd →  gd /  

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 19 Power Dissipation (Dynamic) l Capacitive (Dis)charging » P=CV 2 f » V →  V » C →  C /  l Increase Frequency » f →   f l Power scaling » P →  P

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 20 Power Dissipation (Static) l Static Power » P=V*I » V →  V » I d →  I d » P →  P

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 21 Effects for Scaling down to 1.0μm Area 1/   Capacitance 1/  Current (I d ) 1/  Gate Delay (  gd ) 1/   Dynamic Power  Static Power  Power Density (P/A)  

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 22 Today’s Lecture l Introduction Scaling down to 1.0  m Scaling from 1.0  m down to 0.35  m Scaling from 0.6  m to 0.35  m Scaling Beyond 0.35  m (the figures in this lecture are from André DeHon [1])

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 23 Current (Short-Channel) l I use this model for scaling below 1.0 μm l Saturation Current » » V GS, V DS =V →  V » V T →  V T » W →  W  » L →  L  » C ox →  C ox » I d →  I d

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 24 Gate Delay  gd =Q/I=(CV)/I V →  V I d →  I d C →  C /   gd →  gd / 

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 25 Power Dissipation (Dynamic) l Capacitive (Dis)charging » P=CV 2 f » V →  V » C →  C /  l Increase Frequency » f →  f l Power scaling » P →  P

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 26 Power Dissipation (Static) l Static Power » P=V*I » V →  V » I d →  I d » P →  P

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 27 Effects for Scaling Scaling MethodFixed-Voltage Feature-size range (μm)> Area 1/   Capacitance 1/  Current (I d ) 1/  1 Gate Delay (  gd )1/   1/  Dynamic Power  1 Static Power  1 Power Density (P/A)  

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 28 Today’s Lecture l Introduction Scaling down to 1.0  m Scaling from 1.0  m down to 0.35  m Scaling from 0.6  m to 0.35  m Scaling Beyond 0.35  m (the figures in this lecture are from André DeHon [1])

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 29 Scaling l Problem: Power Density l Solution: Scale Voltages Channel Length (L) Channel Width (W) Oxide Thickness (T ox ) Doping (N a ) 1/ Voltages (V)

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 30 Current l Saturation Current » » V GS, V DS =V →  V  » V T →  V T  » W →  W  » L →  L  » C ox →  C ox » I d →  I d 

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 31 Gate Delay  gd =Q/I=(CV)/I V →  V  I d →  I d  C →  C /   gd →  gd / 

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 32 Power Dissipation (Dynamic) l Capacitive (Dis)charging » P=CV 2 f » V →  V /  » C →  C /  l Increase Frequency » f →  f l Power scaling » P →  P /  

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 33 Power Dissipation (Static) l Static Power » P=V*I » V →  V /  » I d →  I d /  » P →  P /  

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 34 Effects for Scaling Scaling MethodFixed-VoltageConst. El. Field Feature-size range (μm)> Area 1/   Capacitance 1/  Current (I d ) 1/  1 Gate Delay (  gd )1/   1/  Dynamic Power  1 1/   Static Power  1 1/   Power Density (P/A)   

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 35 Today’s Lecture l Introduction Scaling down to 1.0  m Scaling from 1.0  m down to 0.35  m Scaling from 0.6  m to 0.35  m Scaling Beyond 0.35  m (the figures in this lecture are from André DeHon [1])

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 36 Capacitance Revisited Not necessarily C →  C/  l Ho, Mai, Horowitz → sidewall capacitance limited to 75% of total For technologies below 0.35 um assume C →  C /(  » Taken from Table 5 » assumes Miller effect

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 37 Scaling past 0.35  m

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 38 Scaling past 0.35  m FO4 delay = 500ps * Lg (linear,  gd →  gd /  ) Ho, Mai, Horowitz [2] → continue to  m l Assume V = 10V * Lg

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 39 Power Dissipation (Dynamic) l Capacitive (Dis)charging » P=CV 2 f » V →  V  » C →  C /(  (below 0.35  m) l Increase Frequency » f →  f l Power scaling » P →  P  (    (below 0.35  m)

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 40 Effects for Scaling Scaling MethodFixed-VoltageConst. El. Field Feature-size range (μm)> < 0.35 Area 1/   Capacitance 1/  1/(0.78  Current (I d ) 1/  1 Gate Delay (  gd )1/   1/  Dynamic Power  1 1/   1/(0.78    Static Power  1 1/   Power Density (P/A)   

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 41 Example #1: Multiply

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 42 Example #2: l Assumes gate delay dominates l If RC delay dominates, need to use a different approach AreaThroughput (Cell-updates / sec.) Area efficiency Lg (  m) Orig.Scaled To 0.13  m Orig.Scaled To 0.13  m MOPS/mm 2 Custom 2.0  m 270 mm mm M M SPLASH  m 3870 mm mm M M3.58 Sparc  m 64 mm mm 2 1.2M3.7M0.55 DNA Sequence Matching

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 43 Example #3: MPEG-4 Encoding l Assumes gate delay dominates l If RC delay dominates, need to use a different approach Throughput (QCIF frames/sec.) PowerEnergy efficiency Lg (  m) VDDOrig.Scaled To 0.13  m, 1.3 V OrigScaled To 0.13  m OPS/mW Takahashi 0.3  m 2.5 V mW14.4 mW1.92 Hashimoto 0.18  m 1.8 V mW60.1 mW0.346

Spring 2007W. Rhett DavisNC State UniversityECE 747Slide 44 References [1] A. DeHon, “Configurable Computing: Technology and Applications,” Proceedings of the SPIE, vol. 3526, Nov [2] R. Ho, K. W. Mai, and M. A. Horowitz, “The Future of Wires,” Proceedings of the IEEE, vol. 89, no. 4, Apr [3] J. M. Rabaey, A. Chandrakasan, and B. Nikolić, Digital Integrated Circuits: A Design Perspective, 2 nd Edition, Prentice Hall, 2003.