Presentation is loading. Please wait.

Presentation is loading. Please wait.

Penn ESE370 Fall2010 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 6, 2010 Scaling.

Similar presentations


Presentation on theme: "Penn ESE370 Fall2010 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 6, 2010 Scaling."— Presentation transcript:

1 Penn ESE370 Fall2010 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 6, 2010 Scaling

2 Penn ESE370 Fall 2010 -- DeHon 2 Today VLSI Scaling Trends/Disciplines Effects Alternatives (cheating)

3 Penn ESE370 Fall 2010 -- DeHon 3 Scaling Premise: features scale “uniformly” –everything gets better in a predictable manner Parameters:   (lambda) -- Mead and Conway (Day12)  F -- Half pitch – ITRS (F=2 )  S – scale factor –  Rabaey  F ’ =s×F

4 Penn ESE370 Fall 2010 -- DeHon 4 ITRS Roadmap Semiconductor Industry rides this scaling curve Try to predict where industry going –(requirements…self fulfilling prophecy) http://public.itrs.net

5 Penn ESE370 Fall 2010 -- DeHon 5 MOS Transistor Scaling (1974 to present) S=0.7 [0.5x per 2 nodes] Pitch Gate Source: 2001 ITRS - Exec. Summary, ORTC Figure [from Andrew Kahng]

6 Penn ESE370 Fall 2010 -- DeHon 6 Half Pitch (= Pitch/2) Definition (Typical MPU/ASIC) (Typical DRAM) Poly Pitch Metal Pitch Source: 2001 ITRS - Exec. Summary, ORTC Figure [from Andrew Kahng]

7 Penn ESE370 Fall 2010 -- DeHon 7 250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16 0.5x 0.7x NN+1N+2 Node Cycle Time (T yrs): *CARR(T) = [(0.5)^(1/2T yrs)] - 1 CARR(3 yrs) = -10.9% CARR(2 yrs) = -15.9% * CARR(T) = Compound Annual Reduction Rate (@ cycle time period, T) Log Half-Pitch Linear Time 1994 NTRS -.7x/3yrs Actual -.7x/2yrs Scaling Calculator + Node Cycle Time: Source: 2001 ITRS - Exec. Summary, ORTC Figure [from Andrew Kahng]

8 Penn ESE370 Fall 2010 -- DeHon 8 Scaling Channel Length (L) Channel Width (W) Oxide Thickness (T ox ) Doping (N a ) Voltage (V)

9 Penn ESE370 Fall 2010 -- DeHon 9 Full Scaling Channel Length (L) S Channel Width (W) S Oxide Thickness (T ox ) S Doping (N a ) 1/S Voltage (V) S

10 Penn ESE370 Fall 2010 -- DeHon 10 Effects on Physical Properties? Area Capacitance Resistance Threshold (V th ) Current (I d ) Gate Delay (  gd ) Wire Delay (  wire ) Power Go through full (ideal) …then come back and ask what still makes sense today.

11 Penn ESE370 Fall 2010 -- DeHon 11 Area     S   L × W     S 2  130nm   90nm  50% area  2× capacity same area S=0.7 [0.5x per 2 nodes] Pitch Gate L W

12 Penn ESE370 Fall 2010 -- DeHon 12 Capacity Scaling from Intel

13 Penn ESE370 Fall 2010 -- DeHon 13 ITRS 2009 Moore’s Law

14 Penn ESE370 Fall 2010 -- DeHon 14 Capacitance Capacitance per unit area –C ox =  SiO 2 /T ox –T ox   S×T ox –C ox   C ox /S

15 Penn ESE370 Fall 2010 -- DeHon 15 Capacitance Gate Capacitance  C gate = A×C ox     ×S 2  C ox   C ox /S  C gate   S×C gate

16 Penn ESE370 Fall 2010 -- DeHon 16 Threshold Voltage V TH   S×V TH

17 Penn ESE370 Fall 2010 -- DeHon 17 Current Saturation Current I d =(  C OX /2)(W/L)(V gs -V TH ) 2 V gs= V   S×V V TH   S×V TH W   S×W L   S×L C ox   C ox /S I d   S×I d

18 Penn ESE370 Fall 2010 -- DeHon 18 Gate Delay   gd =Q/I=(CV)/I  V   S×V  I d   S×I d  C   S×C   gd   S×  gd

19 19 Overall Scaling Results, Transistor Speed and Leakage. Preliminary Data from 2005 ITRS. Intrinsic Transistor Delay,  CV/I (lower delay = higher speed) Leakage Current (HP: standby power dissipation issues) HP  Target: 17%/yr, historical rate LOP LSTP LSTP  Target: Isd,leak ~ 10 pA/um LOP HP HP = High-Performance Logic LOP = Low Operating Power Logic LSTP = Low Standby Power Logic 17%/yr rate Planar Bulk MOSFETs Advanced MOSFETs

20 ITRS 2009 Transistor Speed Penn ESE370 Fall 2010 -- DeHon 20 RO=Ring Oscillator

21 Penn ESE370 Fall 2010 -- DeHon 21 Resistance R=  L/(W*t) W   S×W L, t similar R   R/S

22 Penn ESE370 Fall 2010 -- DeHon 22 Wire Delay   wire =R  C  R   R/S  C   S×C   wire   wire …assuming (logical) wire lengths remain constant... Assume short wire or buffered wire Important cost shift we will have to watch

23 Penn ESE370 Fall 2010 -- DeHon 23 Power Dissipation (Dynamic) Capacitive (Dis)charging  P=(1/2)CV 2 f  V   S×V  C   S×C  P   S 3 ×P Increase Frequency?   gd   S×  gd  So: f   f/S ?  P   S 2 ×P

24 Penn ESE370 Fall 2010 -- DeHon 24 Effects? Area S 2 Capacitance S Resistance 1/S Threshold (V th ) S Current (I d ) S Gate Delay (  gd ) S Wire Delay (  wire ) 1 Power S 2  S 3

25 Penn ESE370 Fall 2010 -- DeHon 25 Power Density P   S 2 P (increase frequency) P   S 3 P  (dynamic, same freq.) A   S 2 A Power Density: P/A –P/A   P/A increase freq. –P/A   S×P/A same freq.

26 Penn ESE370 Fall 2010 -- DeHon 26 Cheating… Don’t like some of the implications –High resistance wires –Higher capacitance –Atomic-scale dimensions …. Quantum tunneling –Need for more wiring –Not scale speed fast enough

27 Penn ESE370 Fall 2010 -- DeHon 27 Improving Resistance R=  L/(W×t) W   S×W L, t similar R   R/S  Don’t scale t quite as fast  now taller than wide.  Decrease  (copper)

28 Penn ESE370 Fall 2010 -- DeHon 28

29 Penn ESE370 Fall 2010 -- DeHon 29 Capacitance and Leakage Capacitance per unit area –C ox =  SiO 2 /T ox –T ox   S×T ox –C ox   C ox /S Reduce Dielectric Constant  (interconnect) and Increase Dielectric to substitute for scaling T ox (gate quantum tunneling)

30 ITRS 2009 Table PIDS3B Low Operating Power Technology Requirements Grey cells delineate one of two time periods: either before initial production ramp has started for ultra-thin body fully depleted (UTB FD) SOI or multi-gate (MG) MOSFETs, or beyond when planar bulk or UTB FD MOSFETs have reached the limits of practical scaling (see the text and the table notes for further discussion). Year of Production2009201020112012201320142015201620172018201920202021202220232024 MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (contacted) 5445383227242118.916.91513.411.910.69.58.47.5 Lg: Physical Lgate for High Performance logic (nm) 2927242220181715.31412.811.710.79.78.98.17.4 L g : Physical Lgate for Low OperatingPower (LOP) logic (nm) [1]3229272422181715.31412.811.710.79.78.98.17.4 EOT: Equivalent Oxide Thickness (nm) [2] Extended planar bulk 10.9 0.850.8 UTB FD 0.90.850.80.750.7 MG 0.8 0.750.730.7 0.65 0.6 Gate poly depletion (nm) [3] Bulk 0.27 00000000000000 Channel doping (E18 /cm3) [4] Extended Planar Bulk 33.74.555.50.1 Junction depth or body Thickness (nm) [5] Extended Planar Bulk (junction) 141311.5109 UTB FD (body) 76.265.14.7 MG (body) 87.676.45.85.44.84.44.24 EOT elec : Electrical Equivalent Oxide Thickness (nm) [6] Extended Planar Bulk 1.641.531.231.181.14 UTB FD 1.31.251.21.151.1 MG 1.2 1.151.131.1 1.05 11 Penn ESE370 Fall 2010 -- DeHon 30

31 Penn ESE370 Fall 2010 -- DeHon 31 High-K dielectric Survey Wong/IBM J. of R&D, V46N2/3P133--168

32 Penn ESE370 Fall 2010 -- DeHon 32 Intel NYT Announcement Intel Says Chips Will Run Faster, Using Less Power –NYT 1/27/07, John Markov –Claim: “most significant change in the materials used to manufacture silicon chips since Intel pioneered the modern integrated- circuit transistor more than four decades ago” –“Intel’s advance was in part in finding a new insulator composed of an alloy of hafnium…will replace the use of silicon dioxide.”

33 Penn ESE370 Fall 2010 -- DeHon 33 Wire Layers = More Wiring

34 Penn ESE370 Fall 2010 -- DeHon 34 [ITRS2005 Interconnect Chapter] Typical chip cross-section illustrating hierarchical scaling methodology

35 Penn ESE370 Fall 2010 -- DeHon 35 Improving Gate Delay   gd =Q/I=(CV)/I  V   S×V  I d =(  C OX /2)(W/L)(V gs -V TH ) 2  I d   S×I d  C   S×C   gd   S×  gd  Lower C.  Don’t scale V. Don’t scale V: V  V I  I/S  gd  S 2 ×  gd

36 Penn ESE370 Fall 2010 -- DeHon 36 …But Power Dissipation (Dynamic) Capacitive (Dis)charging  P=(1/2)CV 2 f  V   V  C   S×C  P   S×P Increase Frequency?  f   f/S 2 ?  P   P  S If not scale V, power dissipation not scale down.

37 Penn ESE370 Fall 2010 -- DeHon 37 …And Power Density P   P/S (increase frequency) P   S×P  (same freq.) But…    S 2 ×  P/A   (1/S 3 )P/A …. (1/S)P/A Power Density Increases …this is where some companies have gotten into trouble…

38 Penn ESE370 Fall 2010 -- DeHon 38 Intel on Power Challenge [source: Borkar/Intel, Micro37, 12/04]

39 DeHon-Workshop FPT 2009 39 ITRS Vdd Scaling: V Scaling more slowly than F

40 DeHon-Workshop FPT 2009 40 CV 2 scaling from ITRS: More slowly than (1/F) 2

41 DeHon-Workshop FPT 2009 41 Origin of Power Challenge Transistors per chip grow at Moore’s Law rate = (1/F) 2 Energy/tr must decrease at this rate to keep constant E/tr  CV 2 f

42 DeHon-Workshop FPT 2009 42 Historical Power Scaling [Horowitz et al. / IEDM 2005]

43 Impact Can already place more transistors on a chip than we can afford to turn on. Power potential challenge/limiter for all future chips. Penn ESE534 Spring2010 -- DeHon 43

44 Penn ESE370 Fall 2010 -- DeHon 44 What Is A “Red Brick” ? Red Brick = ITRS Technology Requirement with no known solution Alternate definition: Red Brick = something that REQUIRES billions of dollars in R&D investment [from Andrew Kahng]

45 Penn ESE370 Fall 2010 -- DeHon 45 The “Red Brick Wall” - 2001 ITRS vs 1999 Source: Semiconductor International - http://www.e-insite.net/semiconductor/index.asp?layout=article&articleId=CA187876 [from Andrew Kahng]

46 ITRS 2009 Year of Production2009201020112012201320142015201620172018201920202021202220232024 MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (contacted) 5445383227242118.916.91513.411.910.69.58.47.5 Lg: Physical Lgate for High Performance logic (nm) 2927242220181715.31412.811.710.79.78.98.17.4 L g : Physical Lgate for Low OperatingPower (LOP) logic (nm) [1]3229272422181715.31412.811.710.79.78.98.17.4 EOT: Equivalent Oxide Thickness (nm) [2] Extended planar bulk 10.9 0.850.8 UTB FD 0.90.850.80.750.7 MG 0.8 0.750.730.7 0.65 0.6 Gate poly depletion (nm) [3] Bulk 0.27 00000000000000 Channel doping (E18 /cm3) [4] Extended Planar Bulk 33.74.555.50.1 Junction depth or body Thickness (nm) [5] Extended Planar Bulk (junction) 141311.5109 UTB FD (body) 76.265.14.7 MG (body) 87.676.45.85.44.84.44.24 EOT elec : Electrical Equivalent Oxide Thickness (nm) [6] Extended Planar Bulk 1.641.531.231.181.14 UTB FD 1.31.251.21.151.1 MG 1.2 1.151.131.1 1.05 11 C g ideal (fF/  m) [7] Extended Planar Bulk 0.670.6550.7440.7080.669 UTB FD 0.5870.5080.4830.460.439 MG 0.4830.4410.420.390.3660.3340.320.2920.280.255 J g,limit : Maximum gate leakage current density (A/cm 2 ) [8] Extended Planar Bulk 8695100110140 UTB FD 140150170180200 MG 170180200220230260280310280310 V dd : Power Supply Voltage (V) [9] Bulk/UTB FD/MG 0.95 0.85 0.8 0.75 0.7 0.65 0.6 V t,sat : Saturation Threshold Voltage (mV) [10] Extended Planar Bulk 428436407419421 UTB FD 311317320323327 MG 288294297299 297300304311316 I sd,leak (nA/  m) [11] Bulk/UTB FD/MG 5555555555555555 Mobility enhancement factor due to strain [12] Bulk/UTB FD/MG 1.8 Effective Ballistic Enhancement Factor, Kbal [13] Bulk/UTB FD/MG 11111.061.121.191.261.341.421.51.591.691.791.92.01 R sd : Effective Parasitic series source/drain resistance (Ω-µm) [14] Extended Planar Bulk 220200170160150 UTB FD 170165160150 MG 160 150 140 130 I d,sat : NMOS Drive Current with series resistance (µA/µm) [15] Extended Planar Bulk 700746769798729 UTB FD 9049999841,0801,050 MG 1,0701,1201,1001,1901,1301,2101,1401,2001,3201,370 C g fringing capacitance (fF/  m) [16] Extended Planar Bulk 0.2430.2380.2520.2320.239 UTB FD 0.1670.1590.1760.1690.17 MG 0.1860.1790.180.181 0.1820.1790.180.1790.18 C g,total : Total gate capacitance for calculation of CV/I (fF/µm) [17] Extended Planar Bulk 0.9130.8930.9960.940.908 UTB FD 0.750.670.660.630.61 MG 0.6690.620.60.5710.5470.5160.4990.4720.4590.435 τ =CV/I: NMOSFET intrinsic delay (ps) [18] Extended Planar Bulk 1.241.141.111 UTB FD 0.670.530.50.430.4 MG 0.470.410.380.330.310.280.260.230.210.19 Penn ESE370 Fall 2010 -- DeHon 46

47 Penn ESE370 Fall 2010 -- DeHon 47 Conventional Scaling Ends in your lifetime …perhaps in your first few years out of school… Perhaps already: –"Basically, this is the end of scaling.” May 2005, Bernard Meyerson, V.P. and chief technologist for IBM's systems and technology group

48 Penn ESE370 Fall 2010 -- DeHon 48 Admin ARM Talk Tomorrow (Thursday) –Raisler 1:30pm – 3:00pm HW4 due Friday

49 Penn ESE370 Fall 2010 -- DeHon 49 Big Ideas [MSB Ideas] Moderately predictable VLSI Scaling –unprecedented capacities/capability growth for engineered systems –change –be prepared to exploit –account for in comparing across time –…but not for much longer


Download ppt "Penn ESE370 Fall2010 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: October 6, 2010 Scaling."

Similar presentations


Ads by Google