The Status of the LCFI Project Snowmass 2005 Joel Goldstein CCLRC Rutherford Appleton Laboratory For the LCFI Collaboration.

Slides:



Advertisements
Similar presentations
TDC130: High performance Time to Digital Converter in 130 nm
Advertisements

Radiation damage in silicon sensors
Konstantin Stefanov, Rutherford Appleton Laboratory4 th ECFA-DESY Workshop, 1-4 April 2003p. 1 CCD-based Vertex Detector - LCFI status report Konstantin.
Vertex detector optimisation: status and strategies
Monolithic Active Pixel Sensor for aTera-Pixel ECAL at the ILC J.P. Crooks Y. Mikami, O. Miller, V. Rajovic, N.K. Watson, J.A. Wilson University of Birmingham.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory LCFI Status Report: Sensors for the ILC Konstantin Stefanov CCLRC Rutherford Appleton Laboratory.
A CCD-based vertex detector Status report from the LCFI collaboration
Latest Developments from the CCD Front End LCWS 2005 Stanford Joel Goldstein, RAL for the LCFI Collaboration.
J.A. Ballin, P.D. Dauncey, A.-M. Magnan, M. Noy
Konstantin Stefanov, Rutherford Appleton Laboratory UTA LC Workshop, 8 Jan Report from the LCFI collaboration Konstantin Stefanov RAL Introduction:
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 26 September 2006 LCFI Status Report: Vertex Detector R&D Konstantin Stefanov CCLRC Rutherford.
January US LC Workshop SLAC – Chris Damerell 1 Strategies for pickup and noise suppression with different vertex detector technologies Chris Damerell.
LCFI Collaboration Status Report LCWS 2004 Paris Joel Goldstein for the LCFI Collaboration Bristol, Lancaster, Liverpool, Oxford, RAL.
1 Electronics Simulation in the Photon Transport Monte Carlo Preamp model Receiver/discriminator circuit CAFÉ driver circuit model Examples Summary January.
Chapter 3 Logic Gates.
CMOS Logic Circuits.
ISIS and SPiDeR Zhige ZHANG STFC Rutherford Appleton Laboratory.
©Brooks/Cole, 2001 Chapter 12 Derived Types-- Enumerated, Structure and Union.
PSSA Preparation.
HIPPO, a Flexible Front-End Signal Processor for High-Speed Image Sensor Readout Carl Grace, Dario Gnani, Jean-Pierre Walder, and Bob Zheng June 10, 2011.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
LCWS 31/5/2007Erik Johnson STFC,RAL1 ILC Vertex Detector Mechanical Studies Erik Johnson On behalf of the LCFI collaboration STFC, Rutherford Appleton.
Recent developments with LCFI ■ Introduction – towards the ILC ■ Some international VXD developments ■ Progress with LCFI sensor development and testing.
Andrei Nomerotski 1 CCD-based Pixel Detectors by LCFI Andrei Nomerotski (U.Oxford) on behalf of LCFI collaboration Hiroshima2006, Carmel CA Outline  LCFI.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia 1 MAPS-based ECAL Option for ILC ECFA 2006, Valencia, Spain Konstantin.
Andrei Nomerotski 1 3D ISIS : Different approach to ISIS Andrei Nomerotski, LCFI Collaboration Meeting Bristol, 20 June 2006 Outline  What is 3D ? u Reviewed.
Vertex 2002, Kona, Hawaii S.Xella – Rutherford Appleton Laboratory A vertex detector for the next linear collider Stefania Xella on behalf of the LCFI.
1 Instrumentation DepartmentMicroelectronics Design GroupR. Turchetta 3 April 2003 International ECFA/DESY Workshop Amsterdam, 1-4 April 2003 CMOS Monolithic.
Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory PPRP open session: LCFI, IoP, 8 th September Linear Collider Flavour Identification (LCFI)
A new idea of the vertex detector for ILC Y. Sugimoto Nov
Steve Worm – LCFIDESY PRC - May 10, 2007 LCFI Collaboration Status Report Steve Worm Rutherford Appleton Laboratory for the Linear Collider Flavour Identification.
Nicolo de Groot, Rutherford Appleton LaboratoryDESY PRC, 7/8 May 2003p. 1 CCD-based Vertex Detector - LCFI status report Nicolo de Groot RAL/Bristol Conceptual.
Fine Pixel CCD Option for the ILC Vertex Detector
July US LC Workshop Cornell U – Chris Damerell 1 A CCD-based vertex detector Chris Damerell on behalf of the LCFI Collaboration Project overview.
LCFI Collaboration Status Report LCUK Meeting Oxford, 29/1/2004 Joel Goldstein for the LCFI Collaboration Bristol, Lancaster, Liverpool, Oxford, QMUL,
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Development of an ASIC for reading out CCDS at the vertex detector of the International Linear Collider Presenter: Peter Murray ASIC Design Group Science.
Vertex Detector for GLD 3 Mar Y. Sugimoto KEK.
1 Engineering issues for FPCCD VTX Detector Y. Sugimoto KEK July 24, 2007.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory 1 ECFA 2006, Valencia LCFI Status Report: Vertex Detector R&D Konstantin Stefanov CCLRC Rutherford.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
J. Crooks STFC Rutherford Appleton Laboratory
Joel Goldstein, RAL 4th ECFA/DESY LC Workshop, 1/4/ Vertex Readout Joel Goldstein PPd, RAL 4 th ECFA/DESY LC Workshop DAQ Session 1 st April 2003.
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
1 Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory LCFI Detector R&D Status Report WP2 – Sensor Development WP3 – Readout and Drive Electronics.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford for LCFI collaboration ILC VD Workshop, Menaggio, 23 April 2008 LCFI Report.
Konstantin Stefanov, CCLRC Rutherford Appleton Laboratory PPRP open session: LCFI, IoP, 8 th September Linear Collider Flavour Identification (LCFI)
Thin ladder development 28/3/2006. Targets Aiming for 0.1 % X 0 Uniformity over full ladder Compatibility with wire and bump bonding Provision for optical.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Rutherford Appleton Laboratory Particle Physics Department G. Villani CALICE MAPS Siena October th Topical Seminar on Innovative Particle and.
Report to LCFI Oversight Committee, January 2007 ■ Introduction – towards the ILC ■ Some international VXD developments ■ Progress with LCFI sensor development.
1 Konstantin Stefanov, STFC Rutherford Appleton Laboratory 1 TILC08, Sendai, Japan A CCD Based Vertex Detector Konstantin Stefanov STFC Rutherford Appleton.
LCFI POsC, July 13, LCFI Project Oversight Committee Outline CCD Clock Drive (WP3/4) External Electronics (WP4) CCD Sensors (WP2) CCD Testing (WP5)
Steve Worm – LCFIDecember 16, Linear Collider Flavour Identification LCFI Collaboration Report P Allport 3, D Bailey 1, C Buttar 2, D Cussans 1,
1 Konstantin Stefanov, Rutherford Appleton Laboratory 1 LCWS2007 Progress with the CPCCD and the ISIS Konstantin Stefanov Rutherford Appleton Laboratory.
1 Konstantin Stefanov, STFC Rutherford Appleton Laboratory 1 Vertex 2007, Lake Placid A CCD Based Vertex Detector Konstantin Stefanov STFC Rutherford Appleton.
5 May 2006Paul Dauncey1 The ILC, CALICE and the ECAL Paul Dauncey Imperial College London.
Sonja Hillert, University of Oxford2 nd ECFA LC workshop, Durham, 1 st September 2004 p. 0 Recent results from R&D towards a vertex detector at the international.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
Multiple Scattering and Sensor Thickness Preserving track extrapolation accuracy to bulk of particles at low momentum requires ultra-thin sensors and mechanical.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford for LCFI collaboration LCWS2008, 17 November 2008 Column Parallel CCD and Raw Charge Storage.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford Ringberg Workshop, 8 April 2008 Pixels with Internal Storage: ISIS by LCFI.
LCFI Detector Overview
First Testbeam results
LCFI Status Report: Sensors for the ILC
Silicon Pixel Tracker for the ILC
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
FPCCD Vertex Detector for ILC
Presentation transcript:

The Status of the LCFI Project Snowmass 2005 Joel Goldstein CCLRC Rutherford Appleton Laboratory For the LCFI Collaboration

Joel Goldstein, RALSnowmass05 2 Outline 1.LCFI Research Programme: A. Physics Studies (Sonjas Talk) B. Mechanical Development C. Detector Development

Joel Goldstein, RALSnowmass05 3 Baseline Vertex Detector 800 Mchannels of m pixels in 5 layers Optimisation: –Inner radius (1.5 cm?) –Readout time (50 s?) –Ladder thickness (0.1% X 0 ?)

Joel Goldstein, RALSnowmass05 4 Mechanical Options Target of 0.1% X 0 per layer (100 m silicon equivalent) 1.Unsupported Silicon –Longitudinal tensioning provides stiffness –No lateral stability –Not believed to be promising 2.Thin Substrates –Detector thinned to epitaxial layer (20 m) –Silicon glued to low mass substrate for lateral stability –Longitudinal stiffness still from tension –Beryllium has best specific stiffness 3.Rigid Structures

Joel Goldstein, RALSnowmass05 5 Laser Survey System Laser displacement meter on X-Y stage X-Y precision < 1 µm Z precision ~ 1 µm Ladder in cryostat: –T 100 degC Fast: –1D scan in ~ 30s e.g. during cooling

Joel Goldstein, RALSnowmass05 6 Mechanical Studies of Be-Si Physical Prototyping ~160 μm ripples at - 60°C Good qualitative agreement Minimum thickness ~ 0.15% X 0 Tension Silicon detector Glue pillar Beryllium substrate FEA Simulations

Joel Goldstein, RALSnowmass05 7 Carbon Fibre Substrates Carbon fibre has better CTE match than beryllium profile of silicon along the length of a ladder Prototype ~ 0.09% X 0 –No rippling down to < 200K –Investigating lateral stability Thin ceramic substrates may also be possible

Joel Goldstein, RALSnowmass05 8 Other Thin Substrates Other possibilites with good CTE match: –Ceramics: silicon carbide, boron carbide, alumina… –diamond

Joel Goldstein, RALSnowmass05 9 Rigid Structures Prototyping with: –3% RVC –8% SiC No tensioning needed No possibility too crazy…. Foam: substrate or sandwich core

Joel Goldstein, RALSnowmass05 10 Silicon Carbide Foam Thin layer of glue Glue pillars

Joel Goldstein, RALSnowmass05 11 Global Design Work Ladder end with leaf spring Enough detail for ladder design sanity check

Joel Goldstein, RALSnowmass05 12 Sensors: The Challenge What readout speed is needed? Inner layer 1.6 MPixel sensors Once per bunch = 300ns per frame : too fast Once per train ~200 hits/mm 2 : too slow 10 hits/mm 2 => 50μs per frame: just right (Fastest commercial imaging ~ 1 ms/MPixel) Power dissipation – gas volume cooling 337 ns 2820x 0.2 s 0.95 ms Beam Time Structure :

Joel Goldstein, RALSnowmass05 13 Column Parallel CCD N+1 Column Parallel CCD Readout time = (N+1)/F out Separate amplifier and readout for each column 50 MHz clock rate

Joel Goldstein, RALSnowmass05 14 Column Parallel CCD N+1 Column Parallel CCD Readout time = (N+1)/F out Separate amplifier and readout for each column 50 MHz clock rate Clock drive is real challenge

Joel Goldstein, RALSnowmass05 15 Prototype CP CCD CPC1 produced by E2V Two phase operation Metal strapping for clock 2 different gate shapes 3 different types of output 2 different implant levels Clock with highest frequency at lowest voltage

Joel Goldstein, RALSnowmass05 16 CPC1 Results Noise ~ 100 electrons (60 after filter) Minimum clock ~1.9 V Maximum frequency > 25 MHz –inherent clock asymmetry Need bumped assemblies to check charge amplifiers

Joel Goldstein, RALSnowmass05 17 CP Readout ASIC CPR1 designed by RAL ME Group IBM 0.25μm process 250 parallel channels with 20μm pitch Designed for 50 MHz Data multiplexed out through 2 pads

Joel Goldstein, RALSnowmass05 18 Bumped Assemblies Bonding by VTT, Finland Bump yield very high Some whole chip failures –Not yet understood

Joel Goldstein, RALSnowmass05 19 Bumping Failures Short between CCD substrate and chip ground Possible mechanical damage

Joel Goldstein, RALSnowmass05 20 Testing Results Charge amplifiers work Negligible noise from CPR Column parallel operation demonstrated No signal in ~20% of voltage channels Readout chip very sensitive to timing and bias issues Gain decrease towards centre of chip 6 keV X-rays Voltage Amplifiers (non-inverting) Charge Amplifiers (inverting)

Joel Goldstein, RALSnowmass05 21 The Next Generation CCDs –Larger and faster prototypes –Clock drivers –Radiation effects ASICs –More robust –Cluster finding logic Storage Sensors: –Large EM leakage from ILC bunch train –Charge-voltage conversion dangerous –Store multiple charge samples locally –Readout all samples during 200ms dead time

Joel Goldstein, RALSnowmass05 22 In-situ Storage Imaging Sensors 1.Charge collection similar to CCD or CMOS 2.Charge transferred into local CCD array every 50μs 3.Local CCD array clocked at 20 kHz 4.Source follower for every pixel 5.Read out one row at a time Still column parallel

Joel Goldstein, RALSnowmass05 23 Linear ISIS Orders of magnitude increased resistance to RF Much reduced clocking requirements (readout ~1MHz) Combination of CCD and CMOS technology on small pitch Can it be made? Can we afford it? To column load Source followerReset transistor Row select transistor p+ shielding implant n+ buried channel (n) storage pixel #1 storage pixel #20 sense node (n+) Charge collection row select reset gate V DD p+ well reflected charge photogate transfer gate output gate High resistivity epitaxial layer (p)

Joel Goldstein, RALSnowmass Storage gate RSEL OD RD RG OS to column load Storage gate 3 Transfer gate 8 Output gate Output node Photogate Charge generation Transfer Storage Readback from gate 6 Idea by D. Burt and R. Bell (e2V)

Joel Goldstein, RALSnowmass05 25 FAPS FAPS architecture –Flexible active pixel sensors –Adds pixel storage to MAPS –Present design* is proof of principle test structure, delivered & tested in 2004 (MIP S/N = ~15) –Pixels 20x20 m 2, 3 metal layers, 10 storage cells *(2-year PPARC funded programme to develop underpinning technology. Started June 2003)

Joel Goldstein, RALSnowmass05 26 CPC2 Double metal now available from E2V Symmetric clock design Busline-free option Compatible with old and new readout chips

Joel Goldstein, RALSnowmass05 27 Busline Free CCDs Clock signals transmitted via distributed drive planes –Faster propagation –More uniform 1 mm

Joel Goldstein, RALSnowmass05 28 CPC-2 Production 92 mm CPCCD2 Dedicated wafers at E2V 3 sizes of CCD sensors Prototype 16×16 pixel ISIS structures

Joel Goldstein, RALSnowmass05 29 CPC2 Status Wafers in DC Probing Delivery of single metal devices in next few weeks

Joel Goldstein, RALSnowmass05 30 CCD Drivers Clock drivers are a big challenge –Working on air core PCB transformers –Long-term solution more likely to be IC with local storage

Joel Goldstein, RALSnowmass05 31 CPR2 New features: –Cluster finding logic and sparse readout –Better uniformity and linearity (improved amplifiers and ADC) –Reduced sensitivity to clock timing and power supply –Reduced noise –Variety of test modes –IBM 0.25µm –Multi-project run (CERN) –Delivered in March

Joel Goldstein, RALSnowmass05 32 CPR2 Layout Output Sparsification Cluster Binary 5-bit ADC Preamp Input & Multiplexing Finding Conversion

Joel Goldstein, RALSnowmass05 33 CPR2 Testing

Joel Goldstein, RALSnowmass05 34 Summary First generation prototypes extensively studied –Column parallel CCD principle proven –Direct charge output demonstrated Two-prong attack for next generation –Detector-scale CCDs, sparsification –In-situ storage devices for RF resistance 0.1% X 0 ladders seem achievable –Carbon fibre and RVC foam most promising Good progress with physics studies Exciting time ahead!