S.Manen– IEEE Dresden – Oct. 2008 A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.

Slides:



Advertisements
Similar presentations
TDC130: High performance Time to Digital Converter in 130 nm
Advertisements

R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
Fischer 08 1 Analog to Digital Converters Nyquist-Rate ADCs  Flash ADCs  Sub-Ranging ADCs  Folding ADCs  Pipelined ADCs  Successive Approximation.
Mixed Signal Chip Design Lab Analog-to-Digital Converters Jaehyun Lim, Kyusun Choi Department of Computer Science and Engineering The Pennsylvania State.
Pixel-level delta-sigma ADC with optimized area and power for vertically-integrated image sensors 1 Alireza Mahmoodi and Dileepan Joseph University of.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
7 th International Meeting on Front-End Electronics, Montauk NY – May 18 th - 21 st, 2009 Cyclic-ADC developments for Si calorimeter of ILC Laurent ROYER,
Design and Implementation a 8 bits Pipeline Analog to Digital Converter in The Technology 0.6 μm CMOS Process Eri Prasetyo.
Current-Mode Multi-Channel Integrating ADC Electrical Engineering and Computer Science Advisor: Dr. Benjamin J. Blalock Neena Nambiar 16 st April 2009.
NSoC 3DG Paper & Progress Report
Introduction to Analog-to-Digital Converters
CMOS VLSIAnalog DesignSlide 1 CMOS VLSI Analog Design.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
A 10 bit,100 MHz CMOS Analog- to-Digital Converter.
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
PreAmp with 2nd order highpass and differential output pulser 3rd order lowpass.
Guohe Yin, U-Fat Chio, He-Gong Wei, Sai-Weng Sin,
FE8113 ”High Speed Data Converters”. Part 3: High-Speed ADCs.
Calorimeter upgrade meeting – Phone Conference– May 5 th 2010 First prototyping run Upgrade of the front end electronics of the LHCb calorimeter.
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
A 10b Ternary SAR (TSAR) ADC with Decision Time Quantization Based Redundancy Jon Guerber, Manideep Gande, Hariprasath Venkatram, Allen Waters, Un-Ku Moon.
L.ROYER – TWEPP Lisbon – Sept-Oct A Dedicated Front-End ASIC for the ATLAS TileCal Upgrade L.Royer, S.Manen, N.Pillet, H.Chanal, R.Vandaële,
Why Data Conversion? Real world is analog Mostly, communication and computation is digital Need a component to convert analog signals to digital (ADC)
Technical Report High Speed CMOS A/D Converter Circuit for Radio Frequency Signal Kyusun Choi Computer Science and Engineering Department The Pennsylvania.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
Jorge Guilherme Lisbon 20 April 2012 #1 High Dynamic Range Signal Conversion Jorge Guilherme INSTITUTO DE TELECOMUNICAÇÕES Basic Sciences and Enabling.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN.
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
Analog to Digital Converters
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
LC Power Distribution & Pulsing Workshop, May 2011 Super-ALTRO Demonstrator Test Results LC Power Distribution & Pulsing Workshop, May nd November.
Low Power, High-Throughput AD Converters
1 Front-End R and D in HEP (Room temperature and Cryogenic Temperature) Mains analog blocks Charge Sensitive Amplifier Shapers Buffer  ILC (DHCAL et ECAL)
Low Power, High-Throughput AD Converters
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
ASIC Development for Vertex Detector ’07 6/14 Y. Takubo (Tohoku university)
Technical Report 4 for Pittsburgh Digital Greenhouse High Speed CMOS A/D Converter Circuit for Radio Frequency Signal Kyusun Choi Computer Science and.
25 juin 2010DPallin sLHC_Tile meeting1 Tilecal VFE developments at Clermont-Ferrand June 2010 Status G Bohner, J Lecoq, X Soumpholphakdy F Vazeille, D.
1 Progress report on the LPSC-Grenoble contribution in micro- electronics (ADC + DAC) J-Y. Hostachy, J. Bouvier, D. Dzahini, L. Galin-Martel, E. Lagorio,
Low Power, High-Throughput AD Converters
1 D. BRETON 1, L.LETERRIER 2, V.TOCUT 1, Ph. VALLERAND 2 (1) LAL ORSAY - France (2) LPC CAEN - France Super Nemo Absolute Time Stamper A high resolution.
C.Beigbeder, D.Breton, M.El Berni, J.Maalmi, V.Tocut – LAL/In2p3/CNRS L.Leterrier, S. Drouet - LPC/In2p3/CNRS P. Vallerand - GANIL/CNRS/CEA SuperB -Collaboration.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting London 2008.
SKIROC status Calice meeting – Kobe – 10/05/2007.
SOCLE Meeting Dec Roman Pöschl LAL Orsay On behalf of the groups performing Electronics R&D - Introduction - SKIROC2 – Handling the large Dynamic.
A 12-bit low-power ADC for SKIROC
Journées VLSI-FPGA-PCB Juin 2010 Xiaochao Fang
High speed pipelined ADC + Multiplexer for CALICE
ANALOG-TO-DIGITAL CONVERTERS
High speed 12 bits Pipelined ADC proposal for the Ecal
9th Workshop on Electronics for LHC Experiments
R&D activity dedicated to the VFE of the Si-W Ecal
Hugo França-Santos - CERN
Basics of Converter Technology
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
Analog to Digital Converters
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
EUDET – LPC- Clermont VFE Electronics
1 Gbit/s Serial Link 1 Gbit/s Data Link Using Multi Level Signalling
SKIROC status Calice meeting – Kobe – 10/05/2007.
Signal processing for High Granularity Calorimeter
Presented by T. Suomijärvi
A 12 bit 50 MS/s Dual Channel Time Domain Two Step ADC
A 12 bit 50 MS/s Dual Channel Time Domain Two Step ADC
Presentation transcript:

S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel MANEN, Laurent ROYER, Pascal GAY LPC Clermont-Ferrand

S.Manen– IEEE Dresden – Oct VFE electronics of the Ecal  Main requirements for the ADC: –100 Millions channels –ULTRA LOW power is the key issue:  25 µW/channel  2.5 µW for the ADC with one ADC per channel  Power pulsing needed  Advantages with one ADC/ch –No "fast" ADC required –Integrity of analog signals saved –Power saved –Resolution:  12 bits if 2-gain shaping –Time of conversion: 500 µs for 5 data T_conversion = 100 µs –Die area:  As small as possible…

S.Manen– IEEE Dresden – Oct Architecture of the ADC  1.5 bit per stage architecture  Insensitive to the offset of the comparator, ± 1/8 of the dynamic range  Silicon area and consumption limited due to the structure of the ADC  Fully differential Input, reference, clock…  Clock frequency 1MHz, Technology, 0,35µm CMOS AMS

S.Manen– IEEE Dresden – Oct Enhanced ADC and requirements Resolution 12 bits –Open loop gain amplifier, A≥ –Size capacitance, C ≥ 834 fF Conversion rate T<100µs –Bandwidth of the amplifier, f µ ≥2.86MHz Scilab description of the ADC Error of gain tolerated 0.8‰

S.Manen– IEEE Dresden – Oct Design of the ADC  Gain and Σ, gain 2 amplifier  Sub ADC, 2 comparators  DAC, switch array Two conversion phases with a single amplifier

S.Manen– IEEE Dresden – Oct Classical cyclic versus optimized “Classical” Cyclic“Optimized” Cyclic Resolution12 bits Number of elements 1 amplifier 2 comparators 1 capacitors array 1 amplifier 4 comparators 2 capacitors array Time for one conversion 12 µs7 µs Power consumption3.6mW4mW Integrated consumption 1.1µW0.7µW Area0.145mm mm 2 Clock frequency: 1MHz Supply voltage : 3.5V Sent to fabrication in March 08 via CMP, 10 chips delivered with delay in July Technology: 0.35 µm CMOS Austriamicrosystems. ADC designed with the validated building blocks (Amplifier & Comparator) of our 10-bit pipeline ADC (published in IEEE NSS in June 08) but optimized for the 12-bit precision requirement Power pulsing system implemented

S.Manen– IEEE Dresden – Oct Results of measurement 1 MHz clock "Start conversion " signal Oscillogram of the chip under test

S.Manen– IEEE Dresden – Oct DNL Measurement  DNL<+/-1 LSB  No missing code

S.Manen– IEEE Dresden – Oct INL Measurement INL<+/-1.2 LSB Technology limitation due to polysilicon capacitors

S.Manen– IEEE Dresden – Oct Noise measurement Code 1V Standard deviation = 0.84 LSB (420µV)

S.Manen– IEEE Dresden – Oct Power pulsing, measurement - Switch off the master current sources - Recovery time of the biasing of the ADC is 1µs after 7µs latency

S.Manen– IEEE Dresden – Oct Summary  A 12-bit cyclic ADC prototype, dedicated to ECAL of ILC, has been fabricated in 0.35µm CMOS and is under test  First measured performance are in accordance with simulations  Time conversion: 7µs  Consumption: 4 mW/3.5V, integrated consumption: 0.7µW  DNL<+/-1 LSB  INL<+/-1.2 LSB  Noise standard deviation: 0.84LSB  Next measurements have to evaluate:  Dependence of performance with clock frequency  Dynamic performance, SNR, SFDR…  Improvements of the yield (60%), CMFB 12