Design and Implementation of VLSI Systems (EN1600) Lecture 26: Datapath Subsystems 2/4 Prof. Sherief Reda Division of Engineering, Brown University Spring.

Slides:



Advertisements
Similar presentations
Full Adder Display. Topics A 1 bit adder with LED display Ripple Adder Signed/Unsigned Subtraction Hardware Implementation of 4-bit adder.
Advertisements

S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 24: Sequential Circuit Design (2/3) Prof. Sherief Reda Division of Engineering,
Lecture Adders Half adder.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN1600) Lecture 21: Dynamic Combinational Circuit Design Prof. Sherief Reda Division of.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN01600) Lecture 19: Combinational Circuit Design (1/3) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN0160) Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley –
ECE 331 – Digital System Design
Design and Implementation of VLSI Systems (EN1600) Lecture 27: Datapath Subsystems 3/4 Prof. Sherief Reda Division of Engineering, Brown University Spring.
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN1600S08) Lecture12: Logical Effort (1/2) Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 27: Datapath Subsystems 1/3 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 28: Datapath Subsystems 2/3 Prof. Sherief Reda Division of Engineering,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 29: Datapath Subsystems 3/3 Prof. Sherief Reda Division of Engineering,
EECS Components and Design Techniques for Digital Systems Lec 18 – Arithmetic II (Multiplication) David Culler Electrical Engineering and Computer.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 11: Logical Effort (1/2) Prof. Sherief Reda Division of Engineering, Brown.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources:
CSE477 VLSI Digital Circuits Fall 2002 Lecture 20: Adder Design
ECE C03 Lecture 61 Lecture 6 Arithmetic Logic Circuits Hai Zhou ECE 303 Advanced Digital Design Spring 2002.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 22: Sequential Circuit Design (1/2) Prof. Sherief Reda Division of Engineering,
Introduction to CMOS VLSI Design Lecture 11: Adders
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 20: Combinational Circuit Design (2/3) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN1600) Lecture 23: Sequential Circuit Design (2/2) Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 25: Datapath Subsystems 1/4 Prof. Sherief Reda Division of Engineering,
Lecture 8 Arithmetic Logic Circuits
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 31: Array Subsystems (SRAM) Prof. Sherief Reda Division of Engineering,
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) lecture06 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008.
Design and Implementation of VLSI Systems (EN0160) lecture03 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture10: Delay Estimation Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 21: Differential Circuits and Sense Amplifiers Prof. Sherief Reda Division.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 33: Array Subsystems (PLAs/FPGAs) Prof. Sherief Reda Division of Engineering,
S. Reda VLSI Design Design and Implementation of VLSI Systems (EN1600) lecture09 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008.
S. Reda EN160 SP’08 Design and Implementation of VLSI Systems (EN1600) Lecture 13: Logical Effort (2/2) Prof. Sherief Reda Division of Engineering, Brown.
Design and Implementation of VLSI Systems (EN0160)
Lecture 17: Adders.
ECE 301 – Digital Electronics
ECE 301 – Digital Electronics
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 23: Sequential Circuit Design (1/3) Prof. Sherief Reda Division of Engineering,
Spring 2002EECS150 - Lec10-cl1 Page 1 EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1 Feburary 26, 2002 John Wawrzynek.
VLSI Digital System Design Datapath Operations and Ripple-Carry Add.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 26: Project Overview Prof. Sherief Reda Division of Engineering, Brown University.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 17: Static Combinational Circuit Design (1/2) Prof. Sherief Reda Division.
ENGIN112 L14: Binary Adder Subtractor October 3, 2003 ENGIN 112 Intro to Electrical and Computer Engineering Lecture 14 Binary Adders and Subtractors.
4-bit adder, multiplexer, timing diagrams, propagation delays
S. Reda EN1600 SP’08 Design and Implementation of VLSI Systems (EN0160) Lecture 28: Datapath Subsystems 4/4 Prof. Sherief Reda Division of Engineering,
Chapter 5 Arithmetic Logic Functions. Page 2 This Chapter..  We will be looking at multi-valued arithmetic and logic functions  Bitwise AND, OR, EXOR,
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 18: Static Combinational Circuit Design (2/2) Prof. Sherief Reda Division.
Design and Implementation of VLSI Systems (EN1600) lecture05 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
Introduction to CMOS VLSI Design Lecture 11: Adders David Harris Harvey Mudd College Spring 2004.
درس مدارهای منطقی دانشگاه قم مدارهای منطقی محاسباتی تهیه شده توسط حسین امیرخانی مبتنی بر اسلایدهای درس مدارهای منطقی دانشگاه.
DIGITAL CIRCUITS David Kauchak CS52 – Fall 2015.
Computer Organization Department of CSE, SSE Mukka Chapter 6 : ARITHMETIC | Website for students | VTU NOTES.
1 Lecture 6 BOOLEAN ALGEBRA and GATES Building a 32 bit processor PH 3: B.1-B.5.
Spring C:160/55:132 Page 1 Lecture 19 - Computer Arithmetic March 30, 2004 Sukumar Ghosh.
1 Lecture 12 Time/space trade offs Adders. 2 Time vs. speed: Linear chain 8-input OR function with 2-input gates Gates: 7 Max delay: 7.
Lecture 4. Adder & Subtractor Prof. Taeweon Suh Computer Science Education Korea University 2010 R&E Computer System Education & Research.
COMP541 Arithmetic Circuits
ECE 331 – Digital System Design Multi-bit Adder Circuits, Adder/Subtractor Circuit, and Multiplier Circuit (Lecture #12)
EE466: VLSI Design Lecture 13: Adders
Computer Architecture
CMPEN 411 VLSI Digital Circuits Spring 2009 Lecture 19: Adder Design
1 IKI20210 Pengantar Organisasi Komputer Kuliah No. 23: Aritmatika 18 Desember 2002 Bobby Nazief Johny Moningka
C-H1 Lecture Adders Half adder. C-H2 Full Adder si is the modulo- 2 sum of ci, xi, yi.
COMBINATIONAL LOGIC.
CSE477 VLSI Digital Circuits Fall 2002 Lecture 20: Adder Design
Gates AND, OR, NOT NAND, NOR Combinational logic No memory A set of inputs uniquely and unambiguously specifies.
Lecture #23: Arithmetic Circuits-1 Arithmetic Circuits (Part I) Randy H. Katz University of California, Berkeley Fall 2005.
ETE 204 – Digital Electronics Combinational Logic Design Single-bit and Multiple-bit Adder Circuits [Lecture: 9] Instructor: Sajib Roy Lecturer, ETE,ULAB.
Lecture Adders Half adder.
CSE Winter 2001 – Arithmetic Unit - 1
Lecture 2 Adders Half adder.
Presentation transcript:

Design and Implementation of VLSI Systems (EN1600) Lecture 26: Datapath Subsystems 2/4 Prof. Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison Wesley – Rabaey/Pearson]

Last lecture we designed a carry-ripple adder For a full adder, define what happens to carry –Generate: C out = 1 independent of C G = A B –Propagate: C out = C P = A  B –Kill: C out = 0 independent of C K = ~A ~B PG summary

Group carry calculations i j k k-1 The carry into bit i is the carry-out of bit i-1 The sum is equal to

Group generate i j k k-1

Carry-ripple adder revisited

The critical path now proceeds through a chain of AND-OR gates rather than a chain of majority gates

8-bit adder/subtractor 1-bit FA S0S0 C 0 =C in C1C1 1-bit FA S1S1 C2C2 S2S2 C3C3 C 8 =C out 1-bit FA S7S7 C7C7... A0A0 B0B0 A1A1 B1B1 A2A2 B2B2 A7A7 B7B7 add/subt  Subtraction – complement all subtrahend bits (xor gates) and set the low order carry-in