CS 61C L35 Single Cycle CPU Control II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia www.cs.berkeley.edu/~ddgarcia inst.eecs.berkeley.edu/~cs61c.

Slides:



Advertisements
Similar presentations
CS152 Lec9.1 CS152 Computer Architecture and Engineering Lecture 9 Designing Single Cycle Control.
Advertisements

John Lazzaro (
361 datapath Computer Architecture Lecture 8: Designing a Single Cycle Datapath.
CS61C L19 CPU Design : Designing a Single-Cycle CPU (1) Beamer, Summer 2007 © UCB Scott Beamer Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L26 Single Cycle CPU Datapath II (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L20 Single-Cycle CPU Control (1) Beamer, Summer 2007 © UCB Scott Beamer Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS152 / Kubiatowicz Lec8.1 9/26/01©UCB Fall 2001 CS152 Computer Architecture and Engineering Lecture 8 Designing Single Cycle Control September 26, 2001.
CS61C L17 Single Cycle CPU Datapath (1) Garcia, Fall 2005 © UCB Lecturer PSOE, new dad Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Spring 2007 © UCB 3.6 TB DVDs? Maybe!  Researchers at Harvard have found a way to use.
Savio Chau Single Cycle Controller Design Last Time: Discussed the Designing of a Single Cycle Datapath Control Datapath Memory Processor (CPU) Input Output.
Processor II CPSC 321 Andreas Klappenecker. Midterm 1 Tuesday, October 5 Thursday, October 7 Advantage: less material Disadvantage: less preparation time.
Ceg3420 control.1 ©UCB, DAP’ 97 CEG3420 Computer Design Lecture 9.2: Designing Single Cycle Control.
CS61C L17 Combinatorial Logic Blocks (1) Beamer, Summer 2007 © UCB Scott Beamer, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS 61C L27 Single Cycle CPU Datapath, with Verilog II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 25 CPU design (of a single-cycle CPU) Sat Google in Mountain.
CS 61C L34 Single Cycle CPU Control I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Lecturer PSOE Dan Garcia
Microprocessor Design
CS61C L25 Single Cycle CPU Datapath (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
EECC250 - Shaaban #1 lec #22 Winter The Von-Neumann Computer Model Partitioning of the computing engine into components: –Central Processing.
CS61CL L10 CPU II: Control & Pipeline (1) Huddleston, Summer 2009 © UCB Jeremy Huddleston inst.eecs.berkeley.edu/~cs61c CS61CL : Machine Structures Lecture.
ECE 232 L13. Control.1 ©UCB, DAP’ 97 ECE 232 Hardware Organization and Design Lecture 13 Control Design
CS152 / Kubiatowicz Lec8.1 2/22/99©UCB Spring 1999 CS152 Computer Architecture and Engineering Lecture 8 Designing Single Cycle Control Feb 22, 1999 John.
CS61C L25 CPU Design : Designing a Single-Cycle CPU (1) Garcia, Fall 2006 © UCB T-Mobile’s Wi-Fi / Cell phone  T-mobile just announced a new phone that.
CS 61C L17 Control (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #17: CPU Design II – Control
CS151B Computer Systems Architecture Winter 2002 TuTh 2-4pm BH Instructor: Prof. Jason Cong Lecture 8 Designing a Single Cycle Control.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 25 CPU design (of a single-cycle CPU) Intel is prototyping circuits that.
CS61C L25 CPU Design : Designing a Single-Cycle CPU (1) Garcia, Spring 2007 © UCB Google Summer of Code  Student applications are now open (through );
CS 61C L29 Single Cycle CPU Control II (1) Garcia, Fall 2004 © UCB Andrew Schultz inst.eecs.berkeley.edu/~cs61c-tb inst.eecs.berkeley.edu/~cs61c CS61C.
EECC550 - Shaaban #1 Lec # 4 Winter Major CPU Design Steps 1Using independent RTN, write the micro- operations required for all target.
CS 61C discussion 11 (1) Jaein Jeong 2002 Draw the data path: ADD or SUB Clk 555 RwRaRb bit Registers Extender Clk WrEn Adr Data Memory ALU Instruction.
EEM 486: Computer Architecture Lecture 3 Designing a Single Cycle Datapath.
CS61C L27 Single-Cycle CPU Control (1) Garcia, Spring 2010 © UCB inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 27 Single-cycle.
CS 61C L16 Datapath (1) A Carle, Summer 2004 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #16 – Datapath Andy.
CS61C L20 Single Cycle Datapath, Control (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
361 control Computer Architecture Lecture 9: Designing Single Cycle Control.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Spring 2010 © UCB inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures.
ECE 232 L12.Datapath.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 12 Datapath.
ELEN 350 Single Cycle Datapath Adapted from the lecture notes of John Kubiatowicz(UCB) and Hank Walker (TAMU)
CS 61C L28 Single Cycle CPU Control I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L27 Single Cycle CPU Control (1) Garcia, Fall 2006 © UCB Wireless High Definition?  Several companies will be working on a “WirelessHD” standard,
CS3350B Computer Architecture Winter 2015 Lecture 5.6: Single-Cycle CPU: Datapath Control (Part 1) Marc Moreno Maza [Adapted.
Instructor: Sagar Karandikar
Computer Organization CS224 Fall 2012 Lesson 26. Summary of Control Signals addsuborilwswbeqj RegDst ALUSrc MemtoReg RegWrite MemWrite Branch Jump ExtOp.
EEM 486: Computer Architecture Designing Single Cycle Control.
Designing a Single Cycle Datapath In this lecture, slides from lectures 3, 8 and 9 from the course Computer Architecture ECE 201 by Professor Mike Schulte.
EEM 486: Computer Architecture Designing a Single Cycle Datapath.
CPE 442 single-cycle datapath.1 Intro. To Computer Architecture CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath.
CS3350B Computer Architecture Winter 2015 Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2) Marc Moreno Maza [Adapted.
Computer Organization CS224 Chapter 4 Part a The Processor Spring 2011 With thanks to M.J. Irwin, T. Fountain, D. Patterson, and J. Hennessy for some lecture.
Designing a Single- Cycle Processor 國立清華大學資訊工程學系 黃婷婷教授.
Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture The Processor: Datapath & Control.
Csci 136 Computer Architecture II –Single-Cycle Datapath Xiuzhen Cheng
EEM 486: Computer Architecture Lecture 3 Designing Single Cycle Control.
CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single-Cycle CPU Datapath & Control Part 2 Instructors: Krste Asanovic & Vladimir Stojanovic.
CS141-L4-1Tarun Soni, Summer’03 Single Cycle CPU  Previously: built and ALU.  Today: Actually build a CPU Questions on CS140 ? Computer Arithmetic ?
Single Cycle Controller Design
EI209 Chapter 4B.1Haojin Zhu, SJTU 2015 EI 209 Computer Organization Fall 2015 Chapter 4B: The Processor, Control and Multi-cycle Datapath [Adapted from.
CS 110 Computer Architecture Lecture 11: Single-Cycle CPU Datapath & Control Instructor: Sören Schwertfeger School of Information.
(Chapter 5: Hennessy and Patterson) Winter Quarter 1998 Chris Myers
There is one handout today at the front and back of the room!
Exhausted TA Ben Sussman
Lecturer PSOE Dan Garcia
Inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 20 CPU Design: Control II & Pipelining I TA Noah Johnson Greet class.
Instructors: Randy H. Katz David A. Patterson
COMS 361 Computer Organization
Instructors: Randy H. Katz David A. Patterson
COMS 361 Computer Organization
What You Will Learn In Next Few Sets of Lectures
Presentation transcript:

CS 61C L35 Single Cycle CPU Control II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture 35 – Single Cycle CPU Control II Paper DVDs?!  Sony & Toppan Printing say they have developed an optical disk “mostly (51%) from paper”, which can store 5x today’s disks, because of blue lasers. cnn.com/2004/TECH/ptech/04/16/sony.toppan.reut

CS 61C L35 Single Cycle CPU Control II (2) Garcia, Spring 2004 © UCB °5 steps to design a processor 1. Analyze instruction set => datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic °Control is the hard part °MIPS makes that easier Instructions same size Source registers always in same place Immediates same size, location Operations always on registers/immediates Review: Single cycle datapath Control Datapath Memory Processor Input Output

CS 61C L35 Single Cycle CPU Control II (3) Garcia, Spring 2004 © UCB Single Cycle Datapath during Or Immediate? oprsrtimmediate ALUctr = Clk busW RegWr = 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = Extender Mux imm16 ALUSrc = ExtOp = Mux MemtoReg = Clk Data In WrEn 32 Adr Data Memory 32 MemWr = ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt nPC_sel = R[rt] = R[rs] OR ZeroExt[Imm16]

CS 61C L35 Single Cycle CPU Control II (4) Garcia, Spring 2004 © UCB 32 ALUctr = Or Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 0 Extender Mux imm16 ALUSrc = 1 ExtOp = 0 Mux MemtoReg = 0 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction R[rt] = R[rs] OR ZeroExt[Imm16] Imm16RdRsRt oprsrtimmediate nPC_sel= +4 Single Cycle Datapath during Or Immediate?

CS 61C L35 Single Cycle CPU Control II (5) Garcia, Spring 2004 © UCB The Single Cycle Datapath during Load? 32 ALUctr = Clk busW RegWr = 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = Extender Mux imm16 ALUSrc = ExtOp = Mux MemtoReg = Clk Data In WrEn 32 Adr Data Memory 32 MemWr = ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt R[rt] = Data Memory {R[rs] + SignExt[imm16]} oprsrtimmediate nPC_sel=

CS 61C L35 Single Cycle CPU Control II (6) Garcia, Spring 2004 © UCB The Single Cycle Datapath during Load 32 ALUctr = Add Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 0 Extender Mux imm16 ALUSrc = 1 ExtOp = 1 Mux MemtoReg = 1 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt R[rt] = Data Memory {R[rs] + SignExt[imm16]} oprsrtimmediate nPC_sel= +4

CS 61C L35 Single Cycle CPU Control II (7) Garcia, Spring 2004 © UCB The Single Cycle Datapath during Store? oprsrtimmediate ALUctr = Clk busW RegWr = 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = Extender Mux imm16 ALUSrc = ExtOp = Mux MemtoReg = Clk Data In WrEn 32 Adr Data Memory 32 MemWr = ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt nPC_sel = Data Memory {R[rs] + SignExt[imm16]} = R[rt]

CS 61C L35 Single Cycle CPU Control II (8) Garcia, Spring 2004 © UCB The Single Cycle Datapath during Store 32 ALUctr = Add Clk busW RegWr = 0 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = x Extender Mux imm16 ALUSrc = 1 ExtOp = 1 Mux MemtoReg = x Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 1 ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt Data Memory {R[rs] + SignExt[imm16]} = R[rt] oprsrtimmediate nPC_sel= +4

CS 61C L35 Single Cycle CPU Control II (9) Garcia, Spring 2004 © UCB The Single Cycle Datapath during Branch? 32 ALUctr = Clk busW RegWr = 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = Extender Mux imm16 ALUSrc = ExtOp = Mux MemtoReg = x Clk Data In WrEn 32 Adr Data Memory 32 MemWr = ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt if (R[rs] - R[rt] == 0) then Zero = 1 ; else Zero = 0 oprsrtimmediate nPC_sel=

CS 61C L35 Single Cycle CPU Control II (10) Garcia, Spring 2004 © UCB The Single Cycle Datapath during Branch 32 ALUctr =Sub Clk busW RegWr = 0 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = x Extender Mux imm16 ALUSrc = 0 ExtOp = x Mux MemtoReg = x Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt if (R[rs] - R[rt] == 0) then Zero = 1 ; else Zero = 0 oprsrtimmediate nPC_sel= “Br”

CS 61C L35 Single Cycle CPU Control II (11) Garcia, Spring 2004 © UCB Instruction Fetch Unit at the End of Branch if (Zero == 1) then PC = PC SignExt[imm16]*4 ; else PC = PC + 4 oprsrtimmediate What is encoding of nPC_sel? Direct MUX select? Branch / not branch Let’s pick 2nd option Adr Inst Memory Adder PC Clk 00 Mux 4 nPC_sel imm16 Instruction 0 1 Zero nPC_MUX_sel Q: What logic gate?

CS 61C L35 Single Cycle CPU Control II (12) Garcia, Spring 2004 © UCB Step 4: Given Datapath: RTL -> Control ALUctr RegDst ALUSrc ExtOp MemtoRegMemWr Zero Instruction Imm16RdRsRt nPC_sel Adr Inst Memory DATA PATH Control Op Fun RegWr

CS 61C L35 Single Cycle CPU Control II (13) Garcia, Spring 2004 © UCB A Summary of the Control Signals (1/2) inst Register Transfer ADDR[rd] <– R[rs] + R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4” SUBR[rd] <– R[rs] – R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4” ORiR[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4 ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel =“+4” LOADR[rt] <– MEM[ R[rs] + sign_ext(Imm16)];PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4” STOREMEM[ R[rs] + sign_ext(Imm16)] <– R[rs];PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4” BEQif ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4 nPC_sel = “Br”, ALUctr = “sub”

CS 61C L35 Single Cycle CPU Control II (14) Garcia, Spring 2004 © UCB A Summary of the Control Signals (2/2) addsuborilwswbeqjump RegDst ALUSrc MemtoReg RegWrite MemWrite nPCsel Jump ExtOp ALUctr x Add x Subtract Or Add x 1 x x 0 x x Subtract x x x x xxx optarget address oprsrtrdshamtfunct oprsrt immediate R-type I-type J-type add, sub ori, lw, sw, beq jump func op Appendix A See We Don’t Care :-)

CS 61C L35 Single Cycle CPU Control II (15) Garcia, Spring 2004 © UCB Administrivia Final Exam will be here! (2050 VLSB) Sat, , 12:30–3:30pm Take EECS Survey this week! (results will be presented to Faculty; you CAN make a difference in your education & undergraduate experience) Friday’s lecture will be an archived webcast due to EECS faculty retreat. Feel free to watch from home… You’re responsible for the material… Project due Wednesday 11:59pm

CS 61C L35 Single Cycle CPU Control II (16) Garcia, Spring 2004 © UCB Review: Finite State Machine (FSM) States represent possible output values. Transitions represent changes between states based on inputs. Implement with CL and clocked register feedback.

CS 61C L35 Single Cycle CPU Control II (17) Garcia, Spring 2004 © UCB Finite State Machines extremely useful! They define How output signals respond to input signals and previous state. How we change states depending on input signals and previous state The output signals could be our familiar control signals Some control signals may only depend on CL, not on state at all… We could implement very detailed FSMs w/Programmable Logic Arrays

CS 61C L35 Single Cycle CPU Control II (18) Garcia, Spring 2004 © UCB Taking advantage of sum-of-products Since sum-of-products is a convenient notation and way to think about design, offer hardware building blocks that match that notation One example is Programmable Logic Arrays (PLAs) Designed so that can select (program) ands, ors, complements after you get the chip Late in design process, fix errors, figure out what to do later, …

CS 61C L35 Single Cycle CPU Control II (19) Garcia, Spring 2004 © UCB inputs AND array outputs OR array product terms Programmable Logic Arrays Pre-fabricated building block of many AND/OR gates “Programmed” or “Personalized" by making or breaking connections among gates Programmable array block diagram for sum of products form And Programming: How many inputs? How to combine inputs? How many product terms? Or Programming: How to combine product terms? How many outputs?

CS 61C L35 Single Cycle CPU Control II (20) Garcia, Spring 2004 © UCB example: F0 = A + B' C' F1 = A C' + A B F2 = B' C' + A B F3 = B' C + A personality matrix 1 = uncomplemented in term 0 = complemented in term – = does not participate 1 = term connected to output 0 = no connection to output input side: 3 inputs output side: 4 outputs Product inputsoutputs termABCF0F1F2F3 AB11–0110 B'C– AC'1–00100 B'C'– A1––1001 reuse of terms; 5 product terms Enabling Concept Shared product terms among outputs

CS 61C L35 Single Cycle CPU Control II (21) Garcia, Spring 2004 © UCB Before Programming All possible connections available before "programming"

CS 61C L35 Single Cycle CPU Control II (22) Garcia, Spring 2004 © UCB After Programming Unwanted connections are "blown" Fuse (normally connected, break unwanted ones) Anti-fuse (normally disconnected, make wanted connections)

CS 61C L35 Single Cycle CPU Control II (23) Garcia, Spring 2004 © UCB notation for implementing F0 = A B + A' B' F1 = C D' + C' D AB+A'B' CD'+C'D AB A'B' CD' C'D ABCD Alternate Representation Short-hand notation--don't have to draw all the wires X Signifies a connection is present and perpendicular signal is an input to gate

CS 61C L35 Single Cycle CPU Control II (24) Garcia, Spring 2004 © UCB Peer Instruction A. MemToReg=‘x’ & ALUctr=‘sub’. SUB or BEQ? B. ALUctr=‘add’. Which 1 signal is different for all 3 of: ADD, LW, & SW? RegDst or ExtOp? C. “Don’t Care” signals are useful because we can simplify our PLA personality matrix. F / T? ABC 1: SRF 2: SRT 3: SEF 4: SET 5: BRF 6: BRT 7: BEF 8: BET

CS 61C L35 Single Cycle CPU Control II (25) Garcia, Spring 2004 © UCB °5 steps to design a processor 1. Analyze instruction set => datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic °Control is the hard part °MIPS makes that easier Instructions same size Source registers always in same place Immediates same size, location Operations always on registers/immediates And in Conclusion… Single cycle control Control Datapath Memory Processor Input Output