2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數.

Slides:



Advertisements
Similar presentations
Chapter Four Parameter Estimation and Statistical Inference.
Advertisements

Chapter 10 馬可夫鏈 緒言 如果讀者仔細觀察日常生活中所發生的 諸多事件,必然會發現有些事件的未來 發展或演變與該事件現階段的狀況全然 無關,這種事件稱為獨立試行過程 (process of independent trials) ;而另一些 事件則會受到該事件現階段的狀況影響。
第07章 計量值管制圖.
布林代數的應用--- 全及項(最小項)和全或項(最大項)展開式
第七章 抽樣與抽樣分配 蒐集統計資料最常見的方式是抽查。這 牽涉到兩個問題: 抽出的樣本是否具有代表性?是否能反應出母體的特徵?
Ch05 點估計與抽樣分配 授課老師 薛欣達. 學習目標 估計母體參數的樣本統計量 應用中央極限定理 根據估計式的需求性質判斷估計式的好壞 應用自由度的概念 利用樣板計算抽樣分配與相關的結果.
:Word Morphing ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10508:word morphing 解題者:楊家豪 解題日期: 2006 年 5 月 21 日 題意: 第一行給你兩個正整數, 第一個代表下面會出現幾個字串,
Section 1.2 Describing Distributions with Numbers 用數字描述分配.
Event Sampling 事件取樣法. 關心重點為「事件」本身明確的焦點 行為 清楚掌握主題 - 當「事件」出現時才開 始記錄 記錄程序 等待目標事件的發生 開始記錄 事件結束,停止記錄.
第二章 太陽能電池的基本原理 及其結構 2-1 太陽能電池的基本原理 2-2 太陽能電池的基本結構 2-3 太陽能電池的製作.
Chapter Two Data Summary and Presentation. Statistics II2 敘述統計 Vs. 推論統計 n 敘述統計 : 使用分析方法或圖形來描述一組來自於母 體或樣本之資料 n 推論統計 : 利用抽樣方法取得一樣本, 並針對此樣本 計算樣本統計量, 以推論未之母體之參數.
Advanced Chemical Engineering Thermodynamics
指導教授:陳淑媛 學生:李宗叡 李卿輔.  利用下列三種方法 (Edge Detection 、 Local Binary Pattern 、 Structured Local Edge Pattern) 來判斷是否為場景變換,以方便使用者來 找出所要的片段。
亂數產生器安全性評估 之統計測試 SEC HW7 姓名:翁玉芬 學號:
消費者物價指數反映生活成本。當消費者物價指數上升時,一般家庭需要花費更多的金錢才能維持相同的生活水準。經濟學家用物價膨脹(inflation)來描述一般物價持續上升的現象,而物價膨脹率(inflation rate)為物價水準的變動百分比。
STAT0_sampling Random Sampling  母體: Finite population & Infinity population  由一大小為 N 的有限母體中抽出一樣本數為 n 的樣 本,若每一樣本被抽出的機率是一樣的,這樣本稱 為隨機樣本 (random sample)
第 4 章 迴歸的同步推論與其他主題.
1. 假設以下的敘述為一未提供 “ 捷徑計算 ” 能力的程式段,試用程 式設計的技巧,使此敘述經此改 寫的動作後,具有與 “ 捷徑計算 ” 之 處理方法相同之處理模式。 if and then E1 else E2 endif.
Chapter 7 Inference for Distributions 7.1 Inference for the Mean of a Population 7.2 Comparing Two Means 7.3 Inference for Population Spread.
Structural Equation Modeling Chapter 7 觀察變數路徑分析=路徑分析 觀察變數路徑分析.
STAT0_corr1 二變數的相關性  變數之間的關係是統計研究上的一大目標  討論二分類變數的相關性,以列聯表來表示  討論二連續隨機變數時,可以作 x-y 散佈圖觀察它 們的關係強度  以相關係數來代表二者關係的強度.
平均值檢定 假設 檢定 One Sample 平均值 是否為 u. One Sample—1 工廠甲過去向 A 公司購買原料, 平均交貨日約為 4.94 日, 標準差 現在 A 公司改組, 甲工廠繼續向 A 公司 購買, 隨機抽取 8 次採購, 平均日數為 4.29 日, 請問 A 公.
Chapter 9 Hypothesis tests with the t statistic. 當母體  為未知時 ( 我們通常不知 ) ,用樣本 s 來取代 因為用 s 來估計  ,所呈現出來的分佈已不 是 z distribution ,而是 t distribution.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
基礎物理總論 基礎物理總論 熱力學與統計力學(三) Statistical Mechanics 東海大學物理系 施奇廷.
2-group1 第十一章 二組平均數的比較 【應用】 暴露在一氧化碳和暴露在一般空氣下,發生狹心 症情況是否有差異? 新藥的治療是否比較有效? 健康孩童與罹病孩童血清鐵濃度是否不同? 兩種測量儀器的準確性是否有差異? 洗腎病人透析前後體重比較.
Monte Carlo Simulation Part.2 Metropolis Algorithm Dept. Phys. Tunghai Univ. Numerical Methods C. T. Shih.
Chapter 8 Inference for Proportions 第八章 母體比率的推論
信度.
1 第四章 多變數函數的微分學 § 4.1 偏導數定義 定義 極限值 ■. 2 定理 極限值的基本定理 (1) 極限值的唯一性 : 若 存在,則 其值必為唯一。 (2) 若 且 ( 與 為常數 ) , 則 且 為常數且.
Chapter 13 塑模靜態觀點:物件圖 Static View : Object Diagram.
Introduction to Java Programming Lecture 17 Abstract Classes & Interfaces.
: The largest Clique ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11324: The largest Clique 解題者:李重儀 解題日期: 2008 年 11 月 24 日 題意: 簡單來說,給你一個 directed.
Matlab Assignment Due Assignment 兩個 matlab 程式 : Eigenface : Eigenvector 和 eigenvalue 的應用. Fractal : Affine transform( rotation, translation,
: Happy Number ★ ? 題組: Problem Set Archive with Online Judge 題號: 10591: Happy Number 解題者:陳瀅文 解題日期: 2006 年 6 月 6 日 題意:判斷一個正整數 N 是否為 Happy Number.
CH 15- 元件可靠度之驗證  驗證方法  指數模式之可靠度驗證  韋式模式之可靠度驗證  對數常態模式之可靠度驗證  失效數為零時之可靠度估算  各種失效模式之應用.
: Problem A : MiniMice ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11411: Problem A : MiniMice 解題者:李重儀 解題日期: 2008 年 9 月 3 日 題意:簡單的說,題目中每一隻老鼠有一個編號.
緒論 統計的範圍 敘述統計 推論統計 有母數統計 無母數統計 實驗設計 統計的本質 大量 數字 客觀.
Fugacity Coefficient and Fugacity
: Multisets and Sequences ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 11023: Multisets and Sequences 解題者:葉貫中 解題日期: 2007 年 4 月 24 日 題意:在這個題目中,我們要定義.
導線測量平差導論 觀測方程式 多餘方程式 實例 最小控制量 網形平差 χ2檢定:擬合度檢定
:Nuts for nuts..Nuts for nuts.. ★★★★☆ 題組: Problem Set Archive with Online Judge 題號: 10944:Nuts for nuts.. 解題者:楊家豪 解題日期: 2006 年 2 月 題意: 給定兩個正整數 x,y.
第七章 連續機率分配.
資料結構實習-一 參數傳遞.
政治大學公企中心必修課-- 社會科學研究方法(量化分析)--黃智聰
觀測量的權 權的觀念與計算.
Section 4.2 Probability Models 機率模式. 由實驗看機率 實驗前先列出所有可能的實驗結果。 – 擲銅板:正面或反面。 – 擲骰子: 1~6 點。 – 擲骰子兩顆: (1,1),(1,2),(1,3),… 等 36 種。 決定每一個可能的實驗結果發生機率。 – 實驗後所有的實驗結果整理得到。
845: Gas Station Numbers ★★★ 題組: Problem Set Archive with Online Judge 題號: 845: Gas Station Numbers. 解題者:張維珊 解題日期: 2006 年 2 月 題意: 將輸入的數字,經過重新排列組合或旋轉數字,得到比原先的數字大,
介紹不同坐標系之間的轉換 以LS平差方式求解坐標轉換參數
Chapter 10 m-way 搜尋樹與B-Tree
1 2015/6/26 樣本數決策 Hsiao-Li Yu. CONFIDENTIAL 蕭子健老師實驗室 2 抽樣分配 (sampling distribution) -σ μ σ μ -2σσ 2σ …….
C7_prob_2 1 Chap 7 機率論 隨機變數 (random variable) :一群數量的 代表,它們的值是由機會決定的,通常以 大寫英文字母表示 隨機變數分為離散型與連續型兩種。 機率分布 (probability distribution) : 描述 隨機變數值的機率變化 離散型變數的分布直接以.
描述統計 描述統計(Descriptive Statistics)-將蒐集到的資料加以整理和記錄,並以數字和統計圖表的方式來分析及解釋資料所具有的特性. 基本統計值(平均數,中位數,標準差,變異量….) 相關性測量(卡方,相關係數,迴歸…)
Probability Distribution 機率分配 汪群超 12/12. 目的:產生具均等分配的數值 (Data) ,並以 『直方圖』的功能計算出數值在不同範圍內出現 的頻率,及繪製數值的分配圖,以反應出該 機率分配的特性。
Chapter 7 Sampling Distribution
第十二章 變異數分析 12.1 單因子變異數分析 1-way ANOVA Subject : 比較三組以上的母體平均數 k 組資料,母體平均數為 μ 1, …, μ i, …, μ k Data : k 組資料,樣本數為 n 1,…, n k. x ij --- 第 i 組的第 j 個觀察值 N =
Chapter 6 Introduction to Inference 推論簡介. Chapter 6 Introduction to Inference 6.1 Estimating with Confidence 6.2 Tests of Significance 6.3 Making Sense.
連續隨機變數 連續變數:時間、分數、重量、……
第八章 估計.
Teacher : Ing-Jer Huang TA : Chien-Hung Chen 2015/6/30 Course Embedded Systems : Principles and Implementations Weekly Preview Question CH7.1~CH /12/26.
計數值抽樣計劃 使用 MIL-105D 表. 表 10-1 Sample Sizes Code Letters.
: Finding Paths in Grid ★★★★☆ 題組: Contest Archive with Online Judge 題號: 11486: Finding Paths in Grid 解題者:李重儀 解題日期: 2008 年 10 月 14 日 題意:給一個 7 個 column.
:Problem E.Stone Game ★★★☆☆ 題組: Problem Set Archive with Online Judge 題號: 10165: Problem E.Stone Game 解題者:李濟宇 解題日期: 2006 年 3 月 26 日 題意: Jack 與 Jim.
:Rings and Glue ★★☆☆☆ 題組: Problem Set Archive with Online Judge 題號: 10301: Rings and Glue 解題者:施博修 解題日期: 2011 年 5 月 18 日 題意:小約翰有了個大麻煩,他不小心將 rings.
幼兒行為觀察與記錄 第八章 事件取樣法.
1 Chemical and Engineering Thermodynamics Chapter 1 Introduction Sandler.
Chapter 12 Estimation 統計估計. Inferential statistics Parametric statistics 母數統計 ( 母體為常態或 大樣本 ) 假設檢定 hypothesis testing  對有關母體參數的假設,利用樣本資料,決定接受或 不接受該假設的方法.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
Presentation transcript:

2009fallStat_samplec.i.1 Chap10 Sampling distribution (review) 樣本必須是隨機樣本 (random sample) ,才能代表母體 Sample mean 是一隨機變數,隨著每一次抽出來的 樣本值不同,它的值也不同,但會有規律性 為了要知道估計的精確性,必需要知道樣本平均數 的分布 何謂隨機 樣本?

2009fallStat_samplec.i.2 sample mean 的平均數、標準差多少 ? 中心點在那裡?分布的寬度如何?比較寬,或是比較窄? 定理 10.1 証明 sample mean 的分布通常分為三種 case 討論。

2009fallStat_samplec.i.33 Case1 normal population X~ 常態,則 aX+b 仍是常態 常態變數之線性組合仍是常態分布 設 X 1, X 2, …, X n 是一常態隨機樣本, X i ~N(μ , σ 2 ) 定理 10.2 Think 樣本平均數分布之中心點為 μ 樣本數愈大,樣本平均數愈集中於 μ 樣本平均數分布是一常態分布 基本觀念:

2009fallStat_samplec.i.4 血清膽固醇平均數 μ=211 ,標準差 σ= 46 ,隨機抽樣 n=25 ,測得樣本平均數大於 230 的機率有多少? 血清膽固醇平均值小於多少時,其所占比例會低於 10% ? 例 10.1 例 10.2

2009fallStat_samplec.i.55 定理 10.3 常態母體時, σ 未知樣本平均數之分布 註: t 分布正式名稱是 student t-distribution (why?) 設 X 1, X 2, …, X n 是一常態隨機樣本, N(μ , σ 2 ) 。 則下列統計量 t 有一自由度 n-1 的 t- 分布。 Case2 normal population, σ unknown ( 一般情況, σ 是未知的 ) 1. 何謂自由度 (degrees of freedom) ?為何自由度是 n- 1 ? 2.T 與 Z 有何異同 ? Thin k

2009fallStat_samplec.i.66 t 分布 (Student t-distribution)  t- 分布有何優點?  何時可使用 t- 分布?如何使用? Think 自由度 (degrees of freedom)γ 是 t- 分布的參數。 t 分布自由度 γ ,可記作 t( γ) 。 t 分布 p.d.f. 的圖形是一對稱於 0 的山丘形曲線。 自由度 γ 是一形狀參數, γ 值愈大, t 分布的圖形愈集 中, 也愈接近標準常態。 當自由度接近無限大, t 分布接近標準常態分配,

2009fallStat_samplec.i.7 t 分布 與 Z 分布 兩者皆對稱於 0 T 分布是長尾分布 自由度愈大, t 分布愈接近 Z 分布 右尾機率 時, z- 值 是 1.96 , t- 值大於 1.96 t α 值查表 II , P(T>t α )=α

2009fallStat_samplec.i.8 樣本數 n=25 時, t = ? 代表何意為何? 例 10.3 例 10.4 樣本數 n=16 , s=2 ,求

2009fallStat_samplec.i 中央極限定理 (Central Limit Theorem) 樣本平均數分布之形狀接近鐘形

2009fallStat_samplec.i.10 樣本平均數分布的形狀接近鐘形,而且樣本數愈大愈像, 此現象可由統計學上最重要的定理, ” 中央極限定理 ” 來解 釋 樣本平均數的 mean 為 μ , standard deviation 為 σ /√n 當 n 很大時, Z 接近一標準常態分布 此一結果與前面 case1 的結果有何異同 ? Think

2009fallStat_samplec.i.11 註 : 通常 n > 30 時為大樣本。 中央極限定理 此定理的條件有那些 ? Z 的轉換式有何意義 ? 何時用中央極限定理 ? Think 定理 10.4

2009fallStat_samplec.i.12 整理 樣本平均數之 mean = μ ,標準差 = σ /√n Case 1 : Normal sample, σ known 樣本平均數遵循一常態分布 Case 3 : Large Sample 樣本平均數接近一常態分布 Case 2 : Normal sample, σ unknown 樣本平均數 t 化後,遵循一 t- 分布