CS152 / Kubiatowicz Lec8.1 9/26/01©UCB Fall 2001 CS152 Computer Architecture and Engineering Lecture 8 Designing Single Cycle Control September 26, 2001.

Slides:



Advertisements
Similar presentations
CS152 Lec9.1 CS152 Computer Architecture and Engineering Lecture 9 Designing Single Cycle Control.
Advertisements

John Lazzaro (
EECC550 - Shaaban #1 Lec # 4 Summer Major CPU Design Steps 1Using independent RTN, write the micro- operations required for all target ISA.
361 datapath Computer Architecture Lecture 8: Designing a Single Cycle Datapath.
CS61C L19 CPU Design : Designing a Single-Cycle CPU (1) Beamer, Summer 2007 © UCB Scott Beamer Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L26 Single Cycle CPU Datapath II (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
CS61C L20 Single-Cycle CPU Control (1) Beamer, Summer 2007 © UCB Scott Beamer Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Spring 2007 © UCB 3.6 TB DVDs? Maybe!  Researchers at Harvard have found a way to use.
Savio Chau Single Cycle Controller Design Last Time: Discussed the Designing of a Single Cycle Datapath Control Datapath Memory Processor (CPU) Input Output.
Processor II CPSC 321 Andreas Klappenecker. Midterm 1 Tuesday, October 5 Thursday, October 7 Advantage: less material Disadvantage: less preparation time.
Ceg3420 control.1 ©UCB, DAP’ 97 CEG3420 Computer Design Lecture 9.2: Designing Single Cycle Control.
EECC550 - Shaaban #1 Lec # 4 Winter CPU Organization Datapath Design: –Capabilities & performance characteristics of principal Functional.
CS 61C L35 Single Cycle CPU Control II (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS 61C L34 Single Cycle CPU Control I (1) Garcia, Spring 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Microprocessor Design
CS61C L25 Single Cycle CPU Datapath (1) Garcia © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c CS61C : Machine.
EECC250 - Shaaban #1 lec #22 Winter The Von-Neumann Computer Model Partitioning of the computing engine into components: –Central Processing.
ECE 232 L13. Control.1 ©UCB, DAP’ 97 ECE 232 Hardware Organization and Design Lecture 13 Control Design
CS152 / Kubiatowicz Lec8.1 2/22/99©UCB Spring 1999 CS152 Computer Architecture and Engineering Lecture 8 Designing Single Cycle Control Feb 22, 1999 John.
CS61C L25 CPU Design : Designing a Single-Cycle CPU (1) Garcia, Fall 2006 © UCB T-Mobile’s Wi-Fi / Cell phone  T-mobile just announced a new phone that.
CS 61C L17 Control (1) A Carle, Summer 2006 © UCB inst.eecs.berkeley.edu/~cs61c/su06 CS61C : Machine Structures Lecture #17: CPU Design II – Control
CS151B Computer Systems Architecture Winter 2002 TuTh 2-4pm BH Instructor: Prof. Jason Cong Lecture 8 Designing a Single Cycle Control.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Fall 2006 © UCB Lecturer SOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
Inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 25 CPU design (of a single-cycle CPU) Intel is prototyping circuits that.
EECC550 - Shaaban #1 Lec # 4 Winter CPU Organization (Design) Datapath Design: –Capabilities & performance characteristics of principal.
CS61C L25 CPU Design : Designing a Single-Cycle CPU (1) Garcia, Spring 2007 © UCB Google Summer of Code  Student applications are now open (through );
CS 61C L29 Single Cycle CPU Control II (1) Garcia, Fall 2004 © UCB Andrew Schultz inst.eecs.berkeley.edu/~cs61c-tb inst.eecs.berkeley.edu/~cs61c CS61C.
EECC550 - Shaaban #1 Lec # 4 Winter Major CPU Design Steps 1Using independent RTN, write the micro- operations required for all target.
EEM 486: Computer Architecture Lecture 3 Designing a Single Cycle Datapath.
CS61C L27 Single-Cycle CPU Control (1) Garcia, Spring 2010 © UCB inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures Lecture 27 Single-cycle.
CS 61C L16 Datapath (1) A Carle, Summer 2004 © UCB inst.eecs.berkeley.edu/~cs61c/su05 CS61C : Machine Structures Lecture #16 – Datapath Andy.
CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 28: Single-Cycle CPU Datapath Control Part 1 Guest Lecturer: Sagar Karandikar.
CS61C L20 Single Cycle Datapath, Control (1) Chae, Summer 2008 © UCB Albert Chae, Instructor inst.eecs.berkeley.edu/~cs61c CS61C : Machine Structures Lecture.
361 control Computer Architecture Lecture 9: Designing Single Cycle Control.
CS61C L26 CPU Design : Designing a Single-Cycle CPU II (1) Garcia, Spring 2010 © UCB inst.eecs.berkeley.edu/~cs61c UC Berkeley CS61C : Machine Structures.
ECE 232 L12.Datapath.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 12 Datapath.
ELEN 350 Single Cycle Datapath Adapted from the lecture notes of John Kubiatowicz(UCB) and Hank Walker (TAMU)
CS 61C L28 Single Cycle CPU Control I (1) Garcia, Fall 2004 © UCB Lecturer PSOE Dan Garcia inst.eecs.berkeley.edu/~cs61c.
CS61C L27 Single Cycle CPU Control (1) Garcia, Fall 2006 © UCB Wireless High Definition?  Several companies will be working on a “WirelessHD” standard,
CS3350B Computer Architecture Winter 2015 Lecture 5.6: Single-Cycle CPU: Datapath Control (Part 1) Marc Moreno Maza [Adapted.
Instructor: Sagar Karandikar
Computer Organization CS224 Fall 2012 Lesson 26. Summary of Control Signals addsuborilwswbeqj RegDst ALUSrc MemtoReg RegWrite MemWrite Branch Jump ExtOp.
EEM 486: Computer Architecture Designing Single Cycle Control.
Designing a Single Cycle Datapath In this lecture, slides from lectures 3, 8 and 9 from the course Computer Architecture ECE 201 by Professor Mike Schulte.
EEM 486: Computer Architecture Designing a Single Cycle Datapath.
CPE 442 single-cycle datapath.1 Intro. To Computer Architecture CpE242 Computer Architecture and Engineering Designing a Single Cycle Datapath.
CS3350B Computer Architecture Winter 2015 Lecture 5.7: Single-Cycle CPU: Datapath Control (Part 2) Marc Moreno Maza [Adapted.
Computer Organization CS224 Chapter 4 Part a The Processor Spring 2011 With thanks to M.J. Irwin, T. Fountain, D. Patterson, and J. Hennessy for some lecture.
Designing a Single- Cycle Processor 國立清華大學資訊工程學系 黃婷婷教授.
CS4100: 計算機結構 Designing a Single-Cycle Processor 國立清華大學資訊工程學系 一零零學年度第二學期.
Orange Coast College Business Division Computer Science Department CS 116- Computer Architecture The Processor: Datapath & Control.
Csci 136 Computer Architecture II –Single-Cycle Datapath Xiuzhen Cheng
EEM 486: Computer Architecture Lecture 3 Designing Single Cycle Control.
CS 61C: Great Ideas in Computer Architecture (Machine Structures) Single-Cycle CPU Datapath & Control Part 2 Instructors: Krste Asanovic & Vladimir Stojanovic.
CS141-L4-1Tarun Soni, Summer’03 Single Cycle CPU  Previously: built and ALU.  Today: Actually build a CPU Questions on CS140 ? Computer Arithmetic ?
Single Cycle Controller Design
EI209 Chapter 4B.1Haojin Zhu, SJTU 2015 EI 209 Computer Organization Fall 2015 Chapter 4B: The Processor, Control and Multi-cycle Datapath [Adapted from.
CS 110 Computer Architecture Lecture 11: Single-Cycle CPU Datapath & Control Instructor: Sören Schwertfeger School of Information.
(Chapter 5: Hennessy and Patterson) Winter Quarter 1998 Chris Myers
Single Cycle CPU Design
(Chapter 5: Hennessy and Patterson) Winter Quarter 1998 Chris Myers
Lecturer PSOE Dan Garcia
Instructors: Randy H. Katz David A. Patterson
CS152 Computer Architecture and Engineering Lecture 8 Designing a Single Cycle Datapath Start: X:40.
CSCE 350 Computer Architecture Designing a Single Cycle Datapath
COMS 361 Computer Organization
Prof. Giancarlo Succi, Ph.D., P.Eng.
Instructors: Randy H. Katz David A. Patterson
COMS 361 Computer Organization
What You Will Learn In Next Few Sets of Lectures
Presentation transcript:

CS152 / Kubiatowicz Lec8.1 9/26/01©UCB Fall 2001 CS152 Computer Architecture and Engineering Lecture 8 Designing Single Cycle Control September 26, 2001 John Kubiatowicz (http.cs.berkeley.edu/~kubitron) lecture slides:

CS152 / Kubiatowicz Lec8.2 9/26/01©UCB Fall 2001 Recap: Summary from last time °5 steps to design a processor 1. Analyze instruction set => datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic °MIPS makes it easier Instructions same size Source registers always in same place Immediates same size, location Operations always on registers/immediates °Single cycle datapath  CPI=1, Cycle Time = long!

CS152 / Kubiatowicz Lec8.3 9/26/01©UCB Fall 2001 Recap: The MIPS Instruction Formats °All MIPS instructions are 32 bits long. The three instruction formats: R-type I-type J-type °The different fields are: op: operation of the instruction rs, rt, rd: the source and destination registers specifier shamt: shift amount funct: selects the variant of the operation in the “op” field address / immediate: address offset or immediate value target address: target address of the jump instruction optarget address bits26 bits oprsrtrdshamtfunct bits 5 bits oprsrt immediate bits16 bits5 bits

CS152 / Kubiatowicz Lec8.4 9/26/01©UCB Fall 2001 Recap: The MIPS-lite Subset (less filling?) °ADD and subtract add rd, rs, rt sub rd, rs, rt °OR Imm: ori rt, rs, imm16 °LOAD and STORE lw rt, rs, imm16 sw rt, rs, imm16 °BRANCH: beq rs, rt, imm16 oprsrtrdshamtfunct bits 5 bits oprsrtimmediate bits16 bits5 bits

CS152 / Kubiatowicz Lec8.5 9/26/01©UCB Fall 2001 Recap: Overview of the Instruction Fetch Unit °The common RTL operations Fetch the Instruction: mem[PC] Update the program counter: -Sequential Code: PC <- PC + 4 -Branch and Jump: PC <- “something else” 32 Instruction Word Address Instruction Memory PC Clk Next Address Logic

CS152 / Kubiatowicz Lec8.6 9/26/01©UCB Fall 2001 Recap: (3a) Add & Subtract °R[rd] <- R[rs] op R[rt] Example: addU rd, rs, rt Ra, Rb, and Rw come from instruction’s rs, rt, and rd fields ALUctr and RegWr: control logic after decoding the instruction 32 Result ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers RsRtRd ALU oprsrtrdshamtfunct bits 5 bits

CS152 / Kubiatowicz Lec8.7 9/26/01©UCB Fall 2001 Recap: Register-Register Timing: One complete cycle 32 Result ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers RsRtRd ALU Clk PC Rs, Rt, Rd, Op, Func Clk-to-Q ALUctr Instruction Memory Access Time Old ValueNew Value RegWrOld ValueNew Value Delay through Control Logic busA, B Register File Access Time Old ValueNew Value busW ALU Delay Old ValueNew Value Old ValueNew Value Old Value Register Write Occurs Here

CS152 / Kubiatowicz Lec8.8 9/26/01©UCB Fall 2001 Recap: (3b) Logical Operations with Immediate °R[rt] <- R[rs] op ZeroExt[imm16] ] 32 Result ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers Rs ZeroExt Mux RtRd RegDst Mux imm16 ALUSrc ALU 11 oprsrtimmediate bits16 bits5 bits rd? immediate bits Rt?

CS152 / Kubiatowicz Lec8.9 9/26/01©UCB Fall 2001 Recap: (3c) Load Operations °R[rt] <- Mem[R[rs] + SignExt[imm16]]Example: lw rt, rs, imm16 11 oprsrtimmediate bits16 bits5 bits rd 32 ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers Rs RtRd RegDst Extender Mux imm16 ALUSrc ExtOp Clk Data In WrEn 32 Adr Data Memory 32 ALU MemWr Mu x W_Src ?? Rt?

CS152 / Kubiatowicz Lec8.10 9/26/01©UCB Fall 2001 (3d) Recap: Store Operations °Mem[ R[rs] + SignExt[imm16] <- R[rt] ] Example: sw rt, rs, imm16 oprsrtimmediate bits16 bits5 bits 32 ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst Extender Mux imm16 ALUSrc ExtOp Clk Data In WrEn 32 Adr Data Memory MemWr ALU 32 Mu x W_Src

CS152 / Kubiatowicz Lec8.11 9/26/01©UCB Fall 2001 (3e) Recap: The Branch Instruction °beqrs, rt, imm16 mem[PC]Fetch the instruction from memory Equal <- R[rs] == R[rt]Calculate the branch condition if (Equal)Calculate the next instruction’s address -PC <- PC ( SignExt(imm16) x 4 ) else -PC <- PC + 4 oprsrtimmediate bits16 bits5 bits

CS152 / Kubiatowicz Lec8.12 9/26/01©UCB Fall 2001 Recap: Datapath for Branch Operations °beq rs, rt, imm16Datapath generates condition (equal) oprsrtimmediate bits16 bits5 bits 32 imm16 PC Clk 00 Adder Mux Adder 4 nPC_sel Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Equal? Cond PC Ext Inst Address

CS152 / Kubiatowicz Lec8.13 9/26/01©UCB Fall 2001 Putting it All Together: A Single Cycle Datapath imm16 32 ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst Extender Mux imm16 ALUSrc ExtOp Mux MemtoReg Clk Data In WrEn 32 Adr Data Memory MemWr ALU Equal Instruction Imm16RdRtRs = Adder PC Clk 00 Mux 4 nPC_sel PC Ext Adr Inst Memory

CS152 / Kubiatowicz Lec8.14 9/26/01©UCB Fall 2001 An Abstract View of the Critical Path °Register file and ideal memory: The CLK input is a factor ONLY during write operation During read operation, behave as combinational logic: -Address valid => Output valid after “access time.” Critical Path (Load Operation) = PC’s Clk-to-Q + Instruction Memory’s Access Time + Register File’s Access Time + ALU to Perform a 32-bit Add + Data Memory Access Time + Setup Time for Register File Write + Clock Skew Clk 5 RwRaRb bit Registers Rd ALU Clk Data In Data Address Ideal Data Memory Instruction Address Ideal Instruction Memory Clk PC 5 Rs 5 Rt 16 Imm 32 A B Next Address

CS152 / Kubiatowicz Lec8.15 9/26/01©UCB Fall 2001 Questions and Administrative Matters °Monday: selected groups for labs Hopefully everyone is in a group by now…! °Midterm two weeks from Today (Wednesday 10/10): 5:30pm to 8:30pm, TBA (Probably 277 Cory) Make-up quiz? No class on that day (Office hours in my office) Review section previous Sunday? °Midterm reminders: Pencil, calculator, one double-sided 8.5” x 11” page of handwritten notes Sit in every other chair, every other row (odd row & odd seat) °Meet at LaVal’s pizza after the midterm I’ll Buy!

CS152 / Kubiatowicz Lec8.16 9/26/01©UCB Fall 2001 An Abstract View of the Implementation Data Out Clk 5 RwRaRb bit Registers Rd ALU Clk Data In Data Address Ideal Data Memory Instruction Address Ideal Instruction Memory Clk PC 5 Rs 5 Rt 32 A B Next Address Control Datapath Control Signals Conditions

CS152 / Kubiatowicz Lec8.17 9/26/01©UCB Fall 2001 Recap: A Single Cycle Datapath °Rs, Rt, Rd and Imed16 hardwired into datapath from Fetch Unit °We have everything except ontrol signals (underline) Today’s lecture will show you how to generate the control signals 32 ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst Extender Mux imm16 ALUSrc ExtOp Mux MemtoReg Clk Data In WrEn 32 Adr Data Memory 32 MemWr ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt nPC_sel

CS152 / Kubiatowicz Lec8.18 9/26/01©UCB Fall 2001 Recap: Meaning of the Control Signals °nPC_MUX_sel: 0  PC <– PC  PC <– PC SignExt(Im16) || 00 °Later in lecture: higher-level connection between mux and branch cond Adr Inst Memory Adder PC Clk 00 Mux 4 nPC_MUX_sel PC Ext imm16

CS152 / Kubiatowicz Lec8.19 9/26/01©UCB Fall 2001 Recap: Meaning of the Control Signals °ExtOp:“zero”, “sign” °ALUsrc:0  regB; 1  immed °ALUctr:“add”, “sub”, “or” °MemWr:1  write memory °MemtoReg:0  ALU; 1  Mem °RegDst:0  “rt”; 1  “rd” °RegWr:1  write register 32 ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst Extender Mux imm16 ALUSrc ExtOp Mux MemtoReg Clk Data In WrEn 32 Adr Data Memory MemWr ALU Equal =

CS152 / Kubiatowicz Lec8.20 9/26/01©UCB Fall 2001 RTL: The Add Instruction °addrd, rs, rt mem[PC]Fetch the instruction from memory R[rd] <- R[rs] + R[rt]The actual operation PC <- PC + 4Calculate the next instruction’s address oprsrtrdshamtfunct bits 5 bits

CS152 / Kubiatowicz Lec8.21 9/26/01©UCB Fall 2001 Instruction Fetch Unit at the Beginning of Add °Fetch the instruction from Instruction memory: Instruction <- mem[PC] This is the same for all instructions PC Ext Adr Inst Memory Adder PC Clk 00 Mux 4 nPC_MUX_sel imm16 Instruction

CS152 / Kubiatowicz Lec8.22 9/26/01©UCB Fall 2001 The Single Cycle Datapath during Add 32 ALUctr = Add Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 1 Extender Mux imm16 ALUSrc = 0 ExtOp = x Mux MemtoReg = 0 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction °R[rd] <- R[rs] + R[rt] Imm16RdRsRt oprsrtrdshamtfunct nPC_sel= +4

CS152 / Kubiatowicz Lec8.23 9/26/01©UCB Fall 2001 Instruction Fetch Unit at the End of Add °PC <- PC + 4 This is the same for all instructions except: Branch and Jump Adr Inst Memory Adder PC Clk 00 Mux 4 nPC_MUX_sel imm16 Instruction 0 1

CS152 / Kubiatowicz Lec8.24 9/26/01©UCB Fall 2001 The Single Cycle Datapath during Or Immediate °R[rt] <- R[rs] or ZeroExt[Imm16] oprsrtimmediate ALUctr = Clk busW RegWr = 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = Extender Mux imm16 ALUSrc = ExtOp = Mux MemtoReg = Clk Data In WrEn 32 Adr Data Memory 32 MemWr = ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt nPC_sel =

CS152 / Kubiatowicz Lec8.25 9/26/01©UCB Fall 2001 The Single Cycle Datapath during Or Immediate 32 ALUctr = Or Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 0 Extender Mux imm16 ALUSrc = 1 ExtOp = 0 Mux MemtoReg = 0 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction °R[rt] <- R[rs] or ZeroExt[Imm16] Imm16RdRsRt oprsrtimmediate nPC_sel= +4

CS152 / Kubiatowicz Lec8.26 9/26/01©UCB Fall 2001 The Single Cycle Datapath during Load 32 ALUctr = Add Clk busW RegWr = 1 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = 0 Extender Mux imm16 ALUSrc = 1 ExtOp = 1 Mux MemtoReg = 1 Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt °R[rt] <- Data Memory {R[rs] + SignExt[imm16]} oprsrtimmediate nPC_sel= +4

CS152 / Kubiatowicz Lec8.27 9/26/01©UCB Fall 2001 The Single Cycle Datapath during Store °Data Memory {R[rs] + SignExt[imm16]} <- R[rt] oprsrtimmediate ALUctr = Clk busW RegWr = 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = Extender Mux imm16 ALUSrc = ExtOp = Mux MemtoReg = Clk Data In WrEn 32 Adr Data Memory 32 MemWr = ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt nPC_sel =

CS152 / Kubiatowicz Lec8.28 9/26/01©UCB Fall 2001 The Single Cycle Datapath during Store 32 ALUctr = Add Clk busW RegWr = 0 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = x Extender Mux imm16 ALUSrc = 1 ExtOp = 1 Mux MemtoReg = x Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 1 ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt °Data Memory {R[rs] + SignExt[imm16]} <- R[rt] oprsrtimmediate nPC_sel= +4

CS152 / Kubiatowicz Lec8.29 9/26/01©UCB Fall 2001 The Single Cycle Datapath during Branch 32 ALUctr =Sub Clk busW RegWr = 0 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst = x Extender Mux imm16 ALUSrc = 0 ExtOp = x Mux MemtoReg = x Clk Data In WrEn 32 Adr Data Memory 32 MemWr = 0 ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt °if (R[rs] - R[rt] == 0) then Zero <- 1 ; else Zero <- 0 oprsrtimmediate nPC_sel= “Br”

CS152 / Kubiatowicz Lec8.30 9/26/01©UCB Fall 2001 Instruction Fetch Unit at the End of Branch °if (Zero == 1) then PC = PC SignExt[imm16]*4 ; else PC = PC + 4 oprsrtimmediate °What is encoding of nPC_sel? Direct MUX select? Branch / not branch °Let’s choose second option Adr Inst Memory Adder PC Clk 00 Mux 4 nPC_sel imm16 Instruction 0 1 Zero nPC_MUX_sel

CS152 / Kubiatowicz Lec8.31 9/26/01©UCB Fall 2001 Step 4: Given Datapath: RTL -> Control ALUctr RegDst ALUSrc ExtOp MemtoRegMemWr Zero Instruction Imm16RdRsRt nPC_sel Adr Inst Memory DATA PATH Control Op Fun RegWr

CS152 / Kubiatowicz Lec8.32 9/26/01©UCB Fall 2001 A Summary of Control Signals inst Register Transfer ADDR[rd] <– R[rs] + R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “add”, RegDst = rd, RegWr, nPC_sel = “+4” SUBR[rd] <– R[rs] – R[rt];PC <– PC + 4 ALUsrc = RegB, ALUctr = “sub”, RegDst = rd, RegWr, nPC_sel = “+4” ORiR[rt] <– R[rs] + zero_ext(Imm16); PC <– PC + 4 ALUsrc = Im, Extop = “Z”, ALUctr = “or”, RegDst = rt, RegWr, nPC_sel = “+4” LOADR[rt] <– MEM[ R[rs] + sign_ext(Imm16)];PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemtoReg, RegDst = rt, RegWr, nPC_sel = “+4” STOREMEM[ R[rs] + sign_ext(Imm16)] <– R[rs];PC <– PC + 4 ALUsrc = Im, Extop = “Sn”, ALUctr = “add”, MemWr, nPC_sel = “+4” BEQif ( R[rs] == R[rt] ) then PC <– PC + sign_ext(Imm16)] || 00 else PC <– PC + 4 nPC_sel = “Br”, ALUctr = “sub”

CS152 / Kubiatowicz Lec8.33 9/26/01©UCB Fall 2001 A Summary of the Control Signals addsuborilwswbeqjump RegDst ALUSrc MemtoReg RegWrite MemWrite nPCsel Jump ExtOp ALUctr x Add x Subtract Or Add x 1 x x 0 x x Subtract x x x x xxx optarget address oprsrtrdshamtfunct oprsrt immediate R-type I-type J-type add, sub ori, lw, sw, beq jump func op Appendix A See We Don’t Care :-)

CS152 / Kubiatowicz Lec8.34 9/26/01©UCB Fall 2001 The Concept of Local Decoding Main Control op 6 ALU Control (Local) func N 6 ALUop ALUctr 3 ALU

CS152 / Kubiatowicz Lec8.35 9/26/01©UCB Fall 2001 The Encoding of ALUop °In this exercise, ALUop has to be 2 bits wide to represent: (1) “R-type” instructions “I-type” instructions that require the ALU to perform: -(2) Or, (3) Add, and (4) Subtract °To implement the full MIPS ISA, ALUop has to be 3 bits to represent: (1) “R-type” instructions “I-type” instructions that require the ALU to perform: -(2) Or, (3) Add, (4) Subtract, and (5) And (Example: andi) Main Control op 6 ALU Control (Local) func N 6 ALUop ALUctr 3 R-typeorilwswbeqjump ALUop (Symbolic)“R-type”OrAdd Subtract xxx ALUop xxx

CS152 / Kubiatowicz Lec8.36 9/26/01©UCB Fall 2001 The Decoding of the “func” Field R-typeorilwswbeqjump ALUop (Symbolic)“R-type”OrAdd Subtract xxx ALUop xxx Main Control op 6 ALU Control (Local) func N 6 ALUop ALUctr 3 oprsrtrdshamtfunct R-type funct Instruction Operation add subtract and or set-on-less-than ALUctr ALU Operation And Or Add Subtract Set-on-less-than P. 286 text: ALUctr ALU

CS152 / Kubiatowicz Lec8.37 9/26/01©UCB Fall 2001 The Truth Table for ALUctr R-typeorilwswbeq ALUop (Symbolic) “R-type”OrAdd Subtract ALUop funct Instruction Op add subtract and or set-on-less-than

CS152 / Kubiatowicz Lec8.38 9/26/01©UCB Fall 2001 The Logic Equation for ALUctr ALUopfunc bit ALUctr 0x1xxxx1 1xx xx10101 °ALUctr = !ALUop & ALUop + ALUop & !func & func & !func This makes func a don’t care

CS152 / Kubiatowicz Lec8.39 9/26/01©UCB Fall 2001 The Logic Equation for ALUctr ALUopfunc bit 000xxxx1 ALUctr 0x1xxxx1 1xx xx xx10101 °ALUctr = !ALUop & !ALUop + ALUop & !func & !func

CS152 / Kubiatowicz Lec8.40 9/26/01©UCB Fall 2001 The Logic Equation for ALUctr ALUopfunc bit ALUctr 01xxxxx1 1xx xx10101 °ALUctr = !ALUop & ALUop + ALUop & !func & func & !func & func + ALUop & func & !func & func & !func

CS152 / Kubiatowicz Lec8.41 9/26/01©UCB Fall 2001 The ALU Control Block ALU Control (Local) func 3 6 ALUop ALUctr 3 °ALUctr = !ALUop & ALUop + ALUop & !func & func & !func °ALUctr = !ALUop & !ALUop + ALUop & !func & !func °ALUctr = !ALUop & ALUop + ALUop & !func & func & !func & func + ALUop & func & !func & func & !func

CS152 / Kubiatowicz Lec8.42 9/26/01©UCB Fall 2001 Step 5: Logic for each control signal °nPC_sel <= if (OP == BEQ) then “Br” else “+4” °ALUsrc <=if (OP == “Rtype”) then “regB” else “immed” °ALUctr<= if (OP == “Rtype”) then funct elseif (OP == ORi) then “OR” elseif (OP == BEQ) then “sub” else “add” °ExtOp <= _____________ °MemWr<= _____________ °MemtoReg<= _____________ °RegWr:<=_____________ °RegDst:<= _____________

CS152 / Kubiatowicz Lec8.43 9/26/01©UCB Fall 2001 Step 5: Logic for each control signal °nPC_sel <= if (OP == BEQ) then “Br” else “+4” °ALUsrc <=if (OP == “Rtype”) then “regB” else “immed” °ALUctr<= if (OP == “Rtype”) then funct elseif (OP == ORi) then “OR” elseif (OP == BEQ) then “sub” else “add” °ExtOp <= if (OP == ORi) then “zero” else “sign” °MemWr<= (OP == Store) °MemtoReg<= (OP == Load) °RegWr:<= if ((OP == Store) || (OP == BEQ)) then 0 else 1 °RegDst:<= if ((OP == Load) || (OP == ORi)) then 0 else 1

CS152 / Kubiatowicz Lec8.44 9/26/01©UCB Fall 2001 The “Truth Table” for the Main Control R-typeorilwswbeqjump RegDst ALUSrc MemtoReg RegWrite MemWrite nPC_sel Jump ExtOp ALUop (Symbolic) x “R-type” Or Add x 1 x x 0 x x Subtract x x x x xxx op ALUop x x x Main Control op 6 ALU Control (Local) func 3 6 ALUop ALUctr 3RegDst ALUSrc :

CS152 / Kubiatowicz Lec8.45 9/26/01©UCB Fall 2001 The “Truth Table” for RegWrite R-typeorilwswbeqjump RegWrite op °RegWrite = R-type + ori + lw = !op & !op & !op & !op & !op & !op (R-type) + !op & !op & op & op & !op & op (ori) + op & !op & !op & !op & op & op (lw) RegWrite

CS152 / Kubiatowicz Lec8.46 9/26/01©UCB Fall 2001 PLA Implementation of the Main Control RegWrite ALUSrc MemtoReg MemWrite Branch Jump RegDst ExtOp ALUop

CS152 / Kubiatowicz Lec8.47 9/26/01©UCB Fall 2001 A Real MIPS Datapath (CNS T0)

CS152 / Kubiatowicz Lec8.48 9/26/01©UCB Fall 2001 Putting it All Together: A Single Cycle Processor 32 ALUctr Clk busW RegWr 32 busA 32 busB 555 RwRaRb bit Registers Rs Rt Rd RegDst Extender Mux imm16 ALUSrc ExtOp Mux MemtoReg Clk Data In WrEn 32 Adr Data Memory 32 MemWr ALU Instruction Fetch Unit Clk Zero Instruction Imm16RdRsRt Main Control op 6 ALU Control func 6 3 ALUop ALUctr 3 RegDst ALUSrc : Instr nPC_sel

CS152 / Kubiatowicz Lec8.49 9/26/01©UCB Fall 2001 Recap: An Abstract View of the Critical Path (Load) °Register file and ideal memory: The CLK input is a factor ONLY during write operation During read operation, behave as combinational logic: -Address valid => Output valid after “access time.” Critical Path (Load Operation) = PC’s Clk-to-Q + Instruction Memory’s Access Time + Register File’s Access Time + ALU to Perform a 32-bit Add + Data Memory Access Time + Setup Time for Register File Write + Clock Skew Clk 5 RwRaRb bit Registers Rd ALU Clk Data In Data Address Ideal Data Memory Instruction Address Ideal Instruction Memory Clk PC 5 Rs 5 Rt 16 Imm 32 A B Next Address

CS152 / Kubiatowicz Lec8.50 9/26/01©UCB Fall 2001 Worst Case Timing (Load) Clk PC Rs, Rt, Rd, Op, Func Clk-to-Q ALUctr Instruction Memory Access Time Old ValueNew Value RegWrOld ValueNew Value Delay through Control Logic busA Register File Access Time Old ValueNew Value busB ALU Delay Old ValueNew Value Old ValueNew Value Old Value ExtOpOld ValueNew Value ALUSrcOld ValueNew Value MemtoRegOld ValueNew Value AddressOld ValueNew Value busWOld ValueNew Delay through Extender & Mux Register Write Occurs Data Memory Access Time

CS152 / Kubiatowicz Lec8.51 9/26/01©UCB Fall 2001 Drawback of this Single Cycle Processor °Long cycle time: Cycle time must be long enough for the load instruction: PC’s Clock -to-Q + Instruction Memory Access Time + Register File Access Time + ALU Delay (address calculation) + Data Memory Access Time + Register File Setup Time + Clock Skew °Cycle time for load is much longer than needed for all other instructions

CS152 / Kubiatowicz Lec8.52 9/26/01©UCB Fall 2001 Preview Next Time: MultiCycle Data Path CPI  1, CycleTime much shorter (~1/5 of time)

CS152 / Kubiatowicz Lec8.53 9/26/01©UCB Fall 2001 °Single cycle datapath => CPI=1, CCT => long °5 steps to design a processor 1. Analyze instruction set => datapath requirements 2. Select set of datapath components & establish clock methodology 3. Assemble datapath meeting the requirements 4. Analyze implementation of each instruction to determine setting of control points that effects the register transfer. 5. Assemble the control logic °Control is the hard part °MIPS makes control easier Instructions same size Source registers always in same place Immediates same size, location Operations always on registers/immediates Summary Control Datapath Memory Processor Input Output

CS152 / Kubiatowicz Lec8.54 9/26/01©UCB Fall 2001 Where to get more information? °Chapter 5.1 to 5.3 of your text book: David Patterson and John Hennessy, “Computer Organization & Design: The Hardware / Software Interface,” Second Edition, Morgan Kaufman Publishers, San Mateo, California, °One of the best PhD thesis on processor design: Manolis Katevenis, “Reduced Instruction Set Computer Architecture for VLSI,” PhD Dissertation, EECS, U C Berkeley, °For a reference on the MIPS architecture: Gerry Kane, “MIPS RISC Architecture,” Prentice Hall.