9-Oct-2002Prasad et al., ITC'021 A New Algorithm for Global Fault Collapsing into Equivalence and Dominance Sets A. V. S. S. Prasad Agere Systems, Bangalore.

Slides:



Advertisements
Similar presentations
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 121 Lecture 12 Advanced Combinational ATPG Algorithms  FAN – Multiple Backtrace (1983)  TOPS – Dominators.
Advertisements

Appendix: Other ATPG algorithms 1. TOPS – Dominators Kirkland and Mercer (1987) n Dominator of g – all paths from g to PO must pass through the dominator.
An Algorithm for Diagnostic Fault Simulation Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama USA 13/29/2010IEEE LATW 10.
10/28/2009VLSI Design & Test Seminar1 Diagnostic Tests and Full- Response Fault Dictionary Vishwani D. Agrawal ECE Dept., Auburn University Auburn, AL.
1 A Random Access Scan Architecture to Reduce Hardware Overhead Anand S. Mudlapur Vishwani D. Agrawal Adit D. Singh Department of Electrical and Computer.
1 Lecture 10 Sequential Circuit ATPG Time-Frame Expansion n Problem of sequential circuit ATPG n Time-frame expansion n Nine-valued logic n ATPG implementation.
1 Analyzing Reconvergent Fanouts in Gate Delay Fault Simulation Dept. of ECE, Auburn University Auburn, AL Hillary Grimes & Vishwani D. Agrawal.
Nov. 21, 2006ATS'06 1 Spectral RTL Test Generation for Gate-Level Stuck-at Faults Nitin Yogi and Vishwani D. Agrawal Auburn University, Department of ECE,
Partial Implications, etc.
3/30/05Agrawal: Implication Graphs1 Implication Graphs and Logic Testing Vishwani D. Agrawal James J. Danaher Professor Dept. of ECE, Auburn University.
Jan. 29, 2002Gaur, et al.: DELTA'021 A New Transitive Closure Algorithm with Application to Redundancy Identification Vivek Gaur Avant! Corp., Fremont,
Diagnostic Test Generation and Fault Simulation Algorithms for Transition Faults Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama
A Diagnostic Test Generation System Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama USA Nov. 3rdITC
Reduced Complexity Test Generation Algorithms for Transition Fault Diagnosis Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama USA.
May 11, 2006High-Level Spectral ATPG1 High-Level Test Generation for Gate-level Fault Coverage Nitin Yogi and Vishwani D. Agrawal Auburn University Department.
6/11/2015A Fault-Independent etc…1 A Fault-Independent Transitive Closure Algorithm for Redundancy Identification Vishal J. Mehta Kunal K. Dave Vishwani.
Parallel Pattern Single Fault Propagation for Combinational Circuits VLSI Testing (ELEC 7250) Submitted by Blessil George, Jyothi Chimakurthy and Malinky.
Dominance Fault Collapsing - Alok Doshi ELEC 7250 Spring 2004.
Dec. 19, 2005ATS05: Agrawal and Doshi1 Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849,
Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849, USA Vishwani D. Agrawal Alok S. Doshi.
Aug 11, 2006Yogi/Agrawal: Spectral Functional ATPG1 Spectral Characterization of Functional Vectors for Gate-level Fault Coverage Tests Nitin Yogi and.
Sep. 30, 2003Agrawal: ITC'031 Fault Collapsing Via Functional Dominance Vishwani D. Agrawal Rutgers University, ECE Dept., Piscataway, NJ 08854, USA
4/28/05 Raghuraman: ELEC To Generate a Single Test Vector to detect all/most number of faults in a given set Project by: Arvind Raghuraman Course.
6/17/2015Spectral Testing1 Spectral Testing of Digital Circuits An Embedded Tutorial Vishwani D. Agrawal Agere Systems Murray Hill, NJ 07974, USA
August 29, 2003Agrawal: VDAT'031 It is Sufficient to Test 25% of Faults Vishwani D. Agrawal Rutgers University, ECE Dept., Piscataway, NJ 08854, USA
4/20/2006ELEC7250: Alexander 1 LOGIC SIMULATION AND FAULT DIAGNOSIS BY JINS DAVIS ALEXANDER ELEC 7250 PRESENTATION.
ELEC 7250 Term Project Presentation Khushboo Sheth Department of Electrical and Computer Engineering Auburn University, Auburn, AL.
Hierarchical Fault Collapsing for Logic Circuits Thesis Advisor:Vishwani D. Agrawal Committee Members:Victor P. Nelson, Charles E. Stroud Dept. of ECE,
Dec. 29, 2005Texas Instruments (India)1 Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849,
1 Oct 24-26, 2006 ITC'06 Fault Coverage Estimation for Non-Random Functional Input Sequences Soumitra Bose Intel Corporation, Design Technology, Folsom,
1 Fault Nodes in Implication Graph for Equivalence/Dominance Collapsing, and Identifying Untestable and Independent Faults R. Sethuram
Using Hierarchy in Design Automation: The Fault Collapsing Problem Raja K. K. R. Sandireddy Intel Corporation Hillsboro, OR 97124, USA
Independence Fault Collapsing
Using Contrapositive Law to Enhance Implication Graphs of Logic Circuits Kunal K Dave Master’s Thesis Electrical & Computer Engineering Rutgers University.
Exclusive Test and its Application to Fault Diagnosis Vishwani D. Agrawal Dong Hyun Baik Yong C. Kim Kewal K. Saluja Kewal K. Saluja.
Partial Scan Design with Guaranteed Combinational ATPG Vishwani D. Agrawal Agere Systems, Circuits and Systems Research Lab Murray Hill, NJ 07974, USA.
Using Hierarchy in Design Automation: The Fault Collapsing Problem Raja K. K. R. Sandireddy Intel Corporation Hillsboro, OR 97124, USA
May 13, 2005Sandireddy & Agrawal: Hierarchy in Fault Collapsing 1 Use of Hierarchy in Fault Collapsing Raja K. K. R. Sandireddy Intel Corporation Hillsboro,
Jan. 6, 2006VLSI Design '061 On the Size and Generation of Minimal N-Detection Tests Kalyana R. Kantipudi Vishwani D. Agrawal Department of Electrical.
Independence Fault Collapsing and Concurrent Test Generation Thesis Advisor: Vishwani D. Agrawal Committee Members: Victor P. Nelson, Charles E. Stroud.
Oct. 5, 2001Agrawal, Kim and Saluja1 Partial Scan Design With Guaranteed Combinational ATPG Vishwani D. Agrawal Agere Systems Processor Architectures and.
Dominance Fault Collapsing of Combinational Circuits By Kalpesh Shetye & Kapil Gore ELEC 7250, Spring 2004.
Jan. 11, '02Kim, et al., VLSI Design'021 Mutiple Faults: Modeling, Simulation and Test Yong C. Kim University of Wisconsin, Dept. of ECE, Madison, WI 53706,
Using Contrapositive Law in an Implication Graph to Identify Logic Redundancies Kunal K. Dave ATI Research INC. Vishwani D. Agrawal Dept. of ECE, Auburn.
Diagnostic and Detection Fault Collapsing for Multiple Output Circuits Raja K. K. R. Sandireddy and Vishwani D. Agrawal Dept. Of Electrical and Computer.
Chap. 2 Hierarchical Modeling Concepts. 2 Hierarchical Modeling Concepts Design Methodologies 4-bit Ripple Carry Counter Modules Instances Components.
March 8, 2006Spectral RTL ATPG1 High-Level Spectral ATPG for Gate-level Circuits Nitin Yogi and Vishwani D. Agrawal Auburn University Department of ECE.
Introduction to VLSI Design – Lec01. Chapter 1 Introduction to VLSI Design Lecture # 2 A Circuit Design Example.
05/04/06 1 Integrating Logic Synthesis, Tech mapping and Retiming Presented by Atchuthan Perinkulam Based on the above paper by A. Mishchenko et al, UCAL.
THE TESTING APPROACH FOR FPGA LOGIC CELLS E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas Kaunas University of Technology LITHUANIA EWDTW'04.
April 3, 2003Agrawal: Fault Collapsing1 Hierarchical Fault Collapsing; Functional Equivalences and Dominances Vishwani D. Agrawal Rutgers University, Dept.
Dominance Fault Collapsing 1 VLSI TESTING PROJECT Dominance Fault Collapsing Anandshankar Mudlapur Arun Balaji Kannan Muthu Balaji Ramkumar Muthu Balan.
Outline MSI Parts as a Decoder Multiplexer Three State Buffer MSI Parts as a Multiplexer Realization of Switching Functions Using Multiplexers.
High-Level Test Generation. Test Generation by Enhancing Validation Test Sets* * L. Lingappan, et al., VLSI Design, 2007 (Paper available on the class.
How does a Computer Add ? Logic Gates within chips: AND Gate A B Output OR Gate A B Output A B A B
Structural style Modular design and hierarchy Part 1
Dominance Fault Collapsing
Structural style Modular design and hierarchy Part 1
Lecture 10 Sequential Circuit ATPG Time-Frame Expansion
Structural style Modular design and hierarchy Part 1
Polynomial Construction for Arithmetic Circuits
Alan Mishchenko University of California, Berkeley
Vishwani D. Agrawal James J. Danaher Professor
Automatic Test Generation for Combinational Circuits
VLSI Testing Lecture 8: Sequential ATPG
Fault Collapsing via Functional Dominance
A Primal-Dual Solution to Minimal Test Generation Problem
ELEC Digital Logic Circuits Fall 2015 Logic Testing (Chapter 12)
Theorems on Redundancy Identification
A Random Access Scan Architecture to Reduce Hardware Overhead
Presentation transcript:

9-Oct-2002Prasad et al., ITC'021 A New Algorithm for Global Fault Collapsing into Equivalence and Dominance Sets A. V. S. S. Prasad Agere Systems, Bangalore , India Vishwani D. Agrawal Agere Systems, Murray Hill, NJ 07974, USA Madhusudan V. Atre Agere Systems, Bangalore , India

9-Oct-2002Prasad et al., ITC'022 Talk Outline Introduction –Background –Problem statement A new graph model –Dominance graph –Transitive closure –Extraction of equivalence and dominance sets Functional equivalence Hierarchical fault collapsing Benchmark results Conclusion

9-Oct-2002Prasad et al., ITC'023 Test Vector Generation Flow DUT Generate fault list Collapse fault list Generate test vectors Fault Model Required fault coverage

9-Oct-2002Prasad et al., ITC'024 Background Single stuck-at fault model is the most popularly used model. Two faults f1 and f2 are equivalent if all tests that detect f1 also detect f2 (f1=f2) If all tests of fault f1 also detect fault f2, then f2 is said to dominate f1 (f1  f2). a 0 a 1 b 0 b 1 c 0 c 1 a 1  c 1 : Dominance b 1  c 1 : Dominance a 0 = b 0 = c 0 : Equivalence

9-Oct-2002Prasad et al., ITC'025 Background Both equivalence and dominance relations are transitive in nature. [ (f1  f2) and (f2  f3) => (f1  f3) ] If f1 dominates f2 and f2 dominates f1 then f1 and f2 are equivalent. [ (f1  f2) and (f2  f1) => (f1 = f2) ] Number of faults in a 2-input AND gate reduces from 6 to 4 (by equivalence) and to 3 (by dominance) collapsing. Example: ISCAS’85 Circuit - C6288, #faults = 10630, #faults (dominance collapsed) = 5824

9-Oct-2002Prasad et al., ITC'026 Problem Statement To devise a new method for fault collapsing with following attributes: –A single procedure for equivalence and dominance –Global analysis (independence from direction, and other choices, in collapsing) –Functional equivalence –Hierarchical fault collapsing (collapsing in large circuits using pre-collapsed sub networks)

9-Oct-2002Prasad et al., ITC'027 A fault in the circuit is represented by a node in the graph. A directed edge from f2 to f1 indicates that f1 dominates f2 (f2  f1). Edges can represent either structural or functional relations. A New Dominance Graph Model

9-Oct-2002Prasad et al., ITC'028 Computational Model Graph is represented as a connectivity matrix Each fault is assumed to be equivalent to itself Treats functional and structural relations identically (f1  f2) and (f2  f1) => f2 = f1. Appear as symmetrical components in the matrix (e.g., a 0,b 0,c 0 ) #faults = 6 (dimension of dominance matrix) 2-input AND gate

9-Oct-2002Prasad et al., ITC'029 Transitive Closure Transitive closure (TC) of the dominance matrix gives all dominance relations between faults. TC is computed by the O(n 3 ) Floyd- Warshall algorithm, where n is the dimension of the dominance matrix.

9-Oct-2002Prasad et al., ITC'0210 Transitive Closure (F1  F2) and (F2  F3) => (F1  F3) F1F1 F2F2 F3F3 F1F2F3 F1 11 F2 11 F3 1 Graph F1F1 F2F2 F3F3 F1F2F3 F1 111 F2 11 F3 1 Transitive Closure

9-Oct-2002Prasad et al., ITC'0211 Example A B C D E A0A0 B0B0 D0D0 E0E0 C0C0 A1A1 B1B1 D1D1 E1E1 C1C1 Dominance Graph Transitive closure edges

9-Oct-2002Prasad et al., ITC'0212 XOR Circuit Functional Equivalences : (c 1,f 1 ), (g 1,h 1,i 1 ), (g 0,m 0 ) c1c1 f1f1 g1g1 h1h1 i1i1 g0g0 m0m0

9-Oct-2002Prasad et al., ITC'0213 Dominance matrix (XOR) (24x24) Functional equivalences shown as boxed entries

9-Oct-2002Prasad et al., ITC'0214 Transitive Closure (XOR) j 0 k 0 m 1 f 1 f 0 …c 1 a 0

9-Oct-2002Prasad et al., ITC'0215 Results for XOR Circuit #faults#Eq. Faults#Dom. faults With functional equivalence #Dom. faults#Eq. Faults#faults

9-Oct-2002Prasad et al., ITC'0216 Summary of Approach Identify all the primary relations (structural and functional) Construct the dominance graph and represent the same using connectivity matrix Compute Transitive Closure (TC) Extract equivalence and dominance sets from TC

9-Oct-2002Prasad et al., ITC'0217 Features Global in nature (single procedure to treat equivalence and dominance collapsing) Functional relations can easily be incorporated Independent of the order of selecting the faults

9-Oct-2002Prasad et al., ITC'0218 Design Hierarchy Large designs are modular and hierarchical. Advantageous to store the fault information of repeated blocks in a library. When configured as a library cell the fault list includes cell PI & PO faults for transitivity. Top module B1 B0 C0 C1 C0 C1

9-Oct-2002Prasad et al., ITC'0219 XOR Library Cell Useful for hierarchical fault collapsing Dimension of the matrix = 14

9-Oct-2002Prasad et al., ITC' bit Ripple Carry Adder (RCA)

9-Oct-2002Prasad et al., ITC'0221 Faults in 8-bit RCA Number of collapsed faults Flat structural only Hierarchical with functional Equ.Dom.Equ.Dom. Xor cell Full-adder bit adder Circuit name All faults

9-Oct-2002Prasad et al., ITC'0222 ISCAS’85 Circuits Circuit name Total faults Equivalence fault set sizeDominance fault set size Graph methodOther programs*Graph methodFastest C C C432exp C C499exp C C C C C C C * Fastest, Gentest, Hitec, TetraMax

9-Oct-2002Prasad et al., ITC'0223 Conclusion A new algorithm for global fault collapsing With functional equivalence number of faults for ATPG reduces considerably Library based hierarchical fault collapsing is a new concept Further studies are being carried out on: –Functional dominance –Independent fault sets