Common-Gate (Base) Amplifier and Cascode Circuits

Slides:



Advertisements
Similar presentations
Chapter 5: BJT AC Analysis. Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey All rights reserved. Electronic Devices and.
Advertisements

MULTISTAGE AMPLIFIERS
Physical structure of a n-channel device:
Chapter 10 Analog Integrated Circuits The 741 OP-AMP Introduction.
Elettronica T A.A Digital Integrated Circuits © Prentice Hall 2003 Inverter CMOS INVERTER.
Lecture 20 ANNOUNCEMENTS OUTLINE Review of MOSFET Amplifiers
Cascode Stage. OUTLINE Review of BJT Amplifiers Cascode Stage Reading: Chapter 9.1.
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 17 Lecture 17: Common Source/Gate/Drain Amplifiers Prof. Niknejad.
7.2 The Basic Gain Cell 7.3 The Cascode Amplifier
Common-Base vs. Common-Emitter
Fig. 7.1 Bode plot for the typical magnitude term. The curve shown applies for the case of a zero. For a pole, the high-frequency asymptote should be drawn.
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 21 Lecture 21: Voltage/Current Buffer Freq Response Prof. Niknejad.
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 22 Lecture 22: Multistage Amps Prof. Niknejad.
Chapter 2 Small-Signal Amplifiers
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 18 Lecture 18: Bipolar Single Stage Amplifiers Prof. Niknejad.
S. Reda EN160 SP’07 Design and Implementation of VLSI Systems (EN0160) Lecture 21: Differential Circuits and Sense Amplifiers Prof. Sherief Reda Division.
Basic Analog Design Giovanni Anelli 15 March 2005 Part I
Fig. 6.2 Different modes of operation of the differential pair: (a) The differential pair with a common-mode input signal vCM. (b) The differential.
Chapter 16 CMOS Amplifiers
Voltage or Current References Requirements of a Reference Circuit: Should be independent of power supply Should be independent of temperature Should be.
Differential Amplifiers: Second Stage Dr. Paul Hasler.
Recall Last Lecture Biasing of BJT Applications of BJT
Recall Last Lecture Voltage Transfer Characteristic A plot of V o versus V i Use BE loop to obtain a current equation, I B in terms of V i Use CE loop.
Chapter 17 Electronics Fundamentals Circuits, Devices and Applications - Floyd © Copyright 2007 Prentice-Hall Chapter 17.
EE466: VLSI Design Power Dissipation. Outline Motivation to estimate power dissipation Sources of power dissipation Dynamic power dissipation Static power.
1 Opamps Part 2 Dr. David W. Graham West Virginia University Lane Department of Computer Science and Electrical Engineering © 2009 David W. Graham.
Higher order effects Channel Length Modulation Body Effect Leakage current.
1 Power Dissipation in CMOS Two Components contribute to the power dissipation: »Static Power Dissipation –Leakage current –Sub-threshold current »Dynamic.
Electronic Devices and Circuit Theory
HW due Friday (10/18) 6.39,6.61,6.71,6.80 October 15, 2002.
EE 330 Lecture 31 Current Source Biasing Current Sources and Mirrors.
ELECTRICA L ENGINEERING Principles and Applications SECOND EDITION ALLAN R. HAMBLEY ©2002 Prentice-Hall, Inc. Chapter 12 Field-Effect Transistors Chapter.
Subcircuits Example subcircuits Each consists of one or more transistors. They are not used by themselves.
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
13-1 McGraw-Hill Copyright © 2001 by the McGraw-Hill Companies, Inc. All rights reserved. Chapter Thirteen Operational Amplifier Circuits.
Field Effect Transistors
ECE 342 – Jose Schutt-Aine 1 ECE 342 Solid-State Devices & Circuits 16. Active Loads Jose E. Schutt-Aine Electrical & Computer Engineering University of.
Problems on Terminal Resistances Chapter 5. Schedule 153/4TuesdayTerminal Resistance (R B, R C and R E ) L3/4Tuesday small signal model from Cadence,
Differential Amplifiers Prof. Paul Hasler. Differential Transistor Pairs MOSFET Diff-PairBJT Diff-Pair.
HW #5 7.10, 7.21, 7.71, 7.88 Due Tuesday March 3, 2005.
EE141 © Digital Integrated Circuits 2nd Devices 1 Goal of this lecture  Present understanding of device operation  nMOS/pMOS as switches  How to design.
Microelectronic Circuits, Sixth Edition Sedra/Smith Copyright © 2010 by Oxford University Press, Inc. Figure 9.23 The CS circuit at s = s Z. The output.
Subcircuits Example subcircuits Each consists of one or more transistors. They are not used by themselves.
Oxford University Publishing Microelectronic Circuits by Adel S. Sedra and Kenneth C. Smith ( ) 8.2. Small-Signal Operation of the MOS Differential.
Field Effect Transistors (2)
741 Op-Amp Where we are going:. Typical CMOS Amplifier.
University of Toronto ECE530 Analog Electronics MOS Single Stage Amplifiers # 1 MOS Single-Stage Amplifiers.
ECE 333 Linear Electronics Chapter 7 Transistor Amplifiers How a MOSFET or BJT can be used to make an amplifier  linear amplification  model the linear.
UOP ECT 246 Week 2 iLab Transistor Circuits Check this A+ tutorial guideline at
BJT transistors.
Common Base and Common Collector Amplifiers
Review for Final Exam MOSFET and BJT Basis of amplifiers
Basic MOS Amplifiers: DC and Low Frequency Behavior
Bipolar Junction Transistor
HW#10 will be posted tonight
COMMON-GATE AMPLIFIER
Islamic University of Gaza
EMT 112 / 4 ANALOGUE ELECTRONICS
741 Op-Amp Where we are going:.
Chapter 5: BJT AC Analysis
Analog Electronic Circuits 1
Common-Base Amplifier
ECE 333 Linear Electronics
MULTISTAGE AMPLIFIERS
741 Op-Amp Where we are going:.
ENEE 303 5th Discussion.
HW#10 will be posted tonight
Last time Reviewed 4 devices in CMOS Transistors: main device
Lecture 11 ANNOUNCEMENTS OUTLINE Review of BJT Amplifiers
Analysis of Single Stage Amplifiers
Presentation transcript:

Common-Gate (Base) Amplifier and Cascode Circuits Dr. Paul Hasler

Common Gate: Resistive Load Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Vout Vout Vb Vb Vin Vin

Common G: Resistive Load

Common Gate: Resistive Load Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Vout Vout Vb Vb Vin Vin

Common Gate: Resistive Load Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Vout Vout Vb Vb Vin Vin What is the bias current? Iref = (1V) / R1

Common Gate: Resistive Load Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Vb Vb Vin Vin

Common Gate: Resistive Load Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Vb Vb Vin Vin BJT / Subthreshold VT

Common Gate: Resistive Load Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Vb Vb Vin Vin BJT / Subthreshold VT (1V) / R1 = Ico eVb-Vin/UT Vin = Vb - UT ln ( (1V) / R1 Ico )

Common Gate: Resistive Load Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Vb Vb Vin Vin BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) (1V) / R1 = Ico eVb-Vin/UT Vin = Vb - UT ln ( (1V) / R1 Ico )

Common Gate: Resistive Load Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Vb Vb Vin Vin BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) (1V) / R1 = Ico eVb-Vin/UT (1V) / R1 = (K/2) (Vb - Vin - VT )2 Vin = Vb - UT ln ( (1V) / R1 Ico ) Vin = Vb - VT - sqrt((2V)/(K R1))

Common Gate: Small-Signal Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb Vb Vin Vin BJT / Subthreshold VT

Common Gate: Small-Signal Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb Vb Vin Vin BJT / Subthreshold VT gm = I / UT = (1V) / (R1 UT)

Common Gate: Small-Signal Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb Vb Vin Vin BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) gm = I / UT = (1V) / (R1 UT)

Common Gate: Small-Signal Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb Vb Vin Vin BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) gm = 2I /(Vb - Vin -VT) = (2V) / (R1 (Vb - Vin -VT) ) gm = I / UT = (1V) / (R1 UT)

Common Gate: Small-Signal Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb Vb gm = (1V) / (R1 UT) or Vin Vin gm = (2V) / (R1(Vb- Vin-VT) ) Vout GND + V - R1 rp gmV Vin GND

Common Gate: Small-Signal Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb Vb gm = (1V) / (R1 UT) or Vin Vin gm = (2V) / (R1(Vb- Vin-VT) ) Vout Gain = gm R1 GND + V - R1 rp gmV Vin GND

Common Gate: Small-Signal Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb Vb gm = (1V) / (R1 UT) or Vin Vin gm = (2V) / (R1(Vb- Vin-VT) ) Vout Gain = gm R1 GND + V - R1 rp Gain = (1V) / UT gmV or Vin GND Gain = (2V) / (Vb- Vin-VT)

Common Gate: Small-Signal Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb Vb gm = (1V) / (R1 UT) or Vin Vin gm = (2V) / (R1(Vb- Vin-VT) ) Vout Gain = (1V) / UT or Gain = (2V) / (Vb- Vin-VT) GND + V - R1 rp gmV Vin GND

Common Gate: Small-Signal Vdd Vdd Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb Vb gm = (1V) / (R1 UT) or Vin Vin gm = (2V) / (R1(Vb- Vin-VT) ) Vout Gain = (1V) / UT or Gain = (2V) / (Vb- Vin-VT) GND + V - R1 rp gmV Vin Output Resistance = R1 GND

Cascode Circuits Use a common-gate/base transistor to: 1. Improve the output resistance of another transistor. 2. Reduce the Gate-to-Drain capacitance effect of another transistor.

Cascode Circuits Use a common-gate/base transistor to: 1. Improve the output resistance of another transistor. 2. Reduce the Gate-to-Drain capacitance effect of another transistor. Input resistance of common-gate is low Source is nearly fixed if connected to the drain of a transistor

Cascode Circuits Use a common-gate/base transistor to: 1. Improve the output resistance of another transistor. 2. Reduce the Gate-to-Drain capacitance effect of another transistor. Vdrain Vb GND V1 Vgate Input resistance of common-gate is low Source is nearly fixed if connected to the drain of a transistor

Cascode Circuits Vdrain Vbias V1 Vgate GND

Cascode Circuits Idrain = Io e (kVbias -V1 )/UT eVdrain /VA Vgate GND Idrain = Io e (kVbias -V1 )/UT eVdrain /VA = Io e kVgate/UT eV1 /VA

Cascode Circuits Idrain = Io e (kVbias -V1 )/UT eVdrain /VA Vgate GND Idrain = Io e (kVbias -V1 )/UT eVdrain /VA = Io e kVgate/UT eV1 /VA V1 ~ kVbias - kVgate + (UT/VA) Vdrain

Cascode Circuits Idrain = Io e (kVbias -V1 )/UT eVdrain /VA Vgate GND Idrain = Io e (kVbias -V1 )/UT eVdrain /VA = Io e kVgate/UT eV1 /VA V1 ~ kVbias - kVgate + (UT/VA) Vdrain Drain is fixed Fixes the voltage at V1 or isolates V1 from the output

Cascode Circuits Vdrain Vbias V1 Vgate GND Idrain = Io e kVgate/UT e kVbias /VA eVdrain / (Av VA ) Idrain = Io e (kVbias -V1 )/UT eVdrain /VA = Io e kVgate/UT eV1 /VA V1 ~ kVbias - kVgate + (UT/VA) Vdrain Drain is fixed Fixes the voltage at V1 or isolates V1 from the output

Cascode Circuits Vdrain Vdrain Vbias Vgate GND V1 Vgate GND Idrain = Io e kVgate/UT e kVbias /VA eVdrain / (Av VA ) Idrain = Io e (kVbias -V1 )/UT eVdrain /VA = Io e kVgate/UT eV1 /VA V1 ~ kVbias - kVgate + (UT/VA) Vdrain Drain is fixed Fixes the voltage at V1 or isolates V1 from the output

BJT - CMOS Cascode Circuits Preserve High-gm/I

Summary Large signal model of Common-Gate (Base) Amplifier Small signal model of Common-Gate (Base) Amplifier Cascode Circuits --- makes a node insensitive to voltage changes