Presentation is loading. Please wait.

Presentation is loading. Please wait.

741 Op-Amp Where we are going:.

Similar presentations


Presentation on theme: "741 Op-Amp Where we are going:."— Presentation transcript:

1 741 Op-Amp Where we are going:

2 Typical CMOS Amplifier

3 Subthreshold MOSFETs nFET pFET k = 0.58680 Io = 1.2104fA
0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 10 -11 -10 -9 -8 -7 -6 Gate voltage (V) Drain current (A) k = Io = fA G S D nFET B pFET In linear scale, we have a quadratic dependence In log-scale, we have an exponential dependence

4 MOSFET Current-Voltage Curves
( ) e I u V T d g S - = / k ( ) I = I e kV / u e - V / u - e - V / u G T S T D T DS ( ) ( ) k ( ) = V - V / u - - V - I e g S T 1 e V / u d S T ( ) = I e ( kV - V ) / u 1 - e - V / u G S T ds T > = I e ( kV - V ) / u V 4 U G S T ds T Saturation

5 Drain Characteristics

6 Current Sources Current Sink Ever wonder how Current
GND Vb M5 Vout Iout Current Sink V1 Vdd M6 Iout Current Source Ever wonder how we make one of these? How “good” a current source?

7 Current versus Drain Voltage
Not flat due to Early effect (channel length modulation) Id = Id(sat) (1 + (Vd/VA) ) Ic = Ic(sat) (1 + (Vc/VA) ) Iout or Id = Id(sat) eVd/VA 10mA Rout Ic = Ic(sat) eVc/VA GND

8 Current Mirrors nFET Current Mirror pFET Current Mirror
GND Iin Vb M5 Mb Vout Iout Vdd Vb Iin Iout M7 M4 Iout = ( (W/L)5 / (W/L)b ) Iin Iout = ( (W/L)7 / (W/L)4 ) Iin A good way to generate a bias current

9 Current Mirror ( (W/L)7 / (W/L)b ) ( (W/L)6 / (W/L)b ) Iout / Iin =
Vout1 Vout2 Vout3 Vb Mb M5 M6 M7 GND GND GND GND Iout / Iin = ( (W/L)7 / (W/L)b ) Iout = ( (W/L)5 / (W/L)b ) Iin Iout / Iin = ( (W/L)6 / (W/L)b )

10 Diode-Capacitor Dynamics
Iin Iout C (dVi/dt) = Iin - Ico exp(Vi/UT) Iout = Ico exp(Vi/UT) Vi C GND (C / Iout) (d Iout /dt) = Iin - Iout GND GND C (d Iout /dt) = Iout( Iin - Iout )

11 Basic One-Transistor Circuits
Common Source Common Gate Source Follower Common Emitter Common Base Emitter Follower The fundamental two-transisor circuit: Differential Pair

12 Multiple Transistor Configurations
Vdd Vdd Vdd 100pA 500mA 10mA Vout Vout Vout Vin Vin Vin GND GND GND Subthreshold MOS Above threshold MOS BJT JFETs as well….

13 Above Threshold MOSFET Equations
I = (K/2k) ( (k(Vg - VT) - Vs)2 - (k(Vg - VT ) - Vd) 2 ) If k = 1 (ignoring back-gate effects): I = (K/2) ( 2(Vgs - VT) Vds - Vds2 ) Saturation: Qd = 0 I = (K/2k) ( (k(Vg - VT) - Vs)2

14 Gummel Plots Ic: n=1, Is = 5.52fA Ib: n=1.019, Is = 0.048fA 10 10 10
-4 -3 -2 10 -5 Ic: n=1, Is = 5.52fA 10 -6 Currents 10 -7 10 -8 10 -9 Ib: n=1.019, Is = 0.048fA 10 -10 10 -11 10 -12 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Base-Emitter Voltage (V)

15 Small-Signal Modeling
V3 gmV ro V3 V2 rp V1 + V - V3 I I V1 V1 V2 V2 rp gm ro Av BJT (UT b) / I I / UT VA / I VA / UT Above VT MOSFET 2I /(V1-V2 -VT) VA / I 2VA/(V1-V2 -VT) Sub VT MOSFET kI / UT VA / I kVA / UT

16 Signal Flow in Transistors
Rules of Thumb The collector or drain can never be an input terminal. The base or gate can never be an output terminal. In addition it is important to note polarity reversals on these signal paths. The base-collector or gate-drain path inverts. All other paths are noninverting. (This of course assumes that there are no reactive elements causing phase shifts) (Never is too strong a word)

17 Spectrum of Amplifier “Loads”
Vdd Vdd Vdd 10mA R1 Vb Vout Vout Vout Vin Vin Vin GND GND GND Ideal Current Source Load Transistor Current Source Load Resistive Load Remember: On-chip resistors are expensive

18 Basic One-Transistor Circuits
Source Follower or Emitter Follower Buffers (Isolates) the input to (from) the output Vdd Assuming an ideal current source: Vin Ibias = Ieo e(Vin -Vout )/UT Vout Vout = -UT ln(Ibias/Ieo) + Vin 100mA GND Ibias = Ibias e(DVin -DVout )/UT D Vout = D Vin

19 Basic One-Transistor Circuits
Assuming an ideal current source: Vdd Ibias = Io ekVin/UT e-Vout/UT Vin Vout Vout = UT ln(Ibias/Io) + k Vin 10nA Ibias = Ibias ekDVin/UT e-DVout/UT GND D Vout = k D Vin If we use a transistor as a current source: Id = Ibias eVout/VA = Io ekVin/UT e-Vout/UT Vout = UT ln(Ibias/Io) + (k // (VA/UT))Vin

20 MOS Follower Circuits

21 Source Degeneration Why do this? Higher Linearity Possible Stability
GND Vout Vin Circuit Element Vout Vin Why not do this? gm Lower Bandwidth Higher Noise / Df GND

22 Source Degeneration I I = Ieo e V1 /UT = Ieo e(Vin - V1 + Vout/Av )/UT
Neglect VA of Q1 and assume matched devices: Vout I Vin I = Ieo e V1 /UT = Ieo e(Vin - V1 + Vout/Av )/UT Vin V1 2 V1 = Vin + Vout / Av GND Q1 I = Ieo e(Vin + Vout/Av )/(2 UT) GND A similar result for MOSFETs


Download ppt "741 Op-Amp Where we are going:."

Similar presentations


Ads by Google