Presentation is loading. Please wait.

Presentation is loading. Please wait.

741 Op-Amp Where we are going:.

Similar presentations


Presentation on theme: "741 Op-Amp Where we are going:."— Presentation transcript:

1 741 Op-Amp Where we are going:

2 Source Degeneration Why do this? Higher Linearity Possible Stability
GND Vout Vin Circuit Element Vout Vin Why not do this? gm Lower Bandwidth Higher Noise / Df GND

3 Source Degeneration I I = Ieo e V1 /UT = Ieo e(Vin - V1 + Vout/Av )/UT
Neglect VA of Q1 and assume matched devices: Vout I Vin I = Ieo e V1 /UT = Ieo e(Vin - V1 + Vout/Av )/UT Vin V1 2 V1 = Vin + Vout / Av GND Q1 I = Ieo e(Vin + Vout/Av )/(2 UT) GND A similar result for MOSFETs

4 Common Emitter Ibias Ibias = Ico eVin/UT eVout /VA Vout Vin
Common Emitter / Common Source Vdd Amplifies the input signal at the output Ibias 100mA Assuming an ideal current source: Vout Ibias = Ico eVin/UT eVout /VA Vin Vout = -VA ln(Ibias/Ico) + - (k VA / UT) Vin GND

5 Common Drain Ibias Ibias = Ibias ekDVin/UT eDVout/VA
Vdd Amplifies the input signal at the output 100pA Ibias Ibias = Ibias ekDVin/UT eDVout/VA Vout Vin DVout = - (k VA / UT) DVin GND Input conductance = 0

6 Common Drain Id = Ibias e-DVout/VAp = Ibias ekDVin/UT eDVout/VAn
We must account for the other current source: Vdd Vb Ibias Id = Ibias e-DVout/VAp = Ibias ekDVin/UT eDVout/VAn M6 Vout Vin M7 DVout = - (k (VAn // VAp) UT) DVin GND

7 Common-Drain: Amplifier Measurements
Vdd V1 M6 Ibias Vout Mb M7 GND GND

8 Common Drain Ibias Ibias = (K/2) ( Vin - VT )2 (1 + (Vout/VA) )
What about above-threshold operation: Vdd Operating region decreases (Vout > Vin - VT) Derive using quadratic functions: 100mA Ibias Vout Ibias = (K/2) ( Vin - VT )2 (1 + (Vout/VA) ) Vin GND Vout = VA( ) Amplifies the input signal at the output

9 Common E / S: Resistive Load

10 High-Gain Amplifier Experiments
Load-line Analysis

11 Common Base Ibias Ibias = Ico e (Vb -Vin )/UT eVout /VA
Common Base / Common Gate Vdd Amplifies the input signal at the output (non-inverting gain) Ibias 100mA Assuming an ideal current source: Vout Ibias = Ico e (Vb -Vin )/UT eVout /VA Vb Vout = -VA ln(Ibias/Ico) + (VA / UT) Vin - (VA / UT) Vb Vin Gain = VA / UT = Av

12 Common Gate Ibias = Io e (kVb -Vin )/UT eVout /VA Ibias
Vdd Using a subthreshold MOSFET : 100pA Ibias = Io e (kVb -Vin )/UT eVout /VA Ibias Vout = -VA ln(Ibias/Io) + (VA / UT) Vin - (k VA / UT) Vb Vout Vb Gain = VA / UT = Av Vin Problem: Large input current

13 Common G: Resistive Load

14 Cascode Circuits Use a common-gate/base transistor to:
1. Improve the output resistance of another transistor. 2. Reduce the Gate-to-Drain capacitance effect of another transistor. Vdrain Vin GND V1 Vgate Input resistance of common-gate is low Source is nearly fixed if connected to the drain of a transistor

15 Cascode Circuits Vdrain Vdrain Vbias Vgate GND V1 Vgate GND Idrain = Io e kVgate/UT e kVbias /VA eVdrain / (Av VA ) Idrain = Io e (kVbias -V1 )/UT eVdrain /VA = Io e kVgate/UT eV1 /VA V1 ~ kVbias - kVgate + (UT/VA) Vdrain Drain is fixed Fixes the voltage at V1 or isolates V1 from the output

16 Cascode Common-Drain Amp
Vdd One Pole V1 High Output Resistance / DC Gain biasp Vout Ibias biasn Vb Mb GND GND

17 BJT Cascode Configuration

18 MOS Cascode Circuit

19 BJT - CMOS Cascode Circuits
Preserve High-gm/I

20 Cascade Configurations

21 Cascade Connection: Rout

22 BJT-MOS Cascades A good way to get zero base current….

23 Cascades: More stuff


Download ppt "741 Op-Amp Where we are going:."

Similar presentations


Ads by Google