CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY

Slides:



Advertisements
Similar presentations
Electronics for large LAr TPC’s F. Pietropaolo (ICARUS Collaboration) CRYODET Workshop LNGS, March 2006.
Advertisements

R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
1 H-Cal front-end ASIC Status LAL Orsay J. Fleury, C. de la Taille, G. Martin, L. Raux.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.
Building blocks 0.18 µm XFAB SOI Calice Meeting - Argonne 2014 CALIIMAX-HEP 18/03/2014 Jean-Baptiste Cizel - Calice meeting Argonne 1.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay on behalf of the CALICE and EUDET collaborations
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
Vendredi 18 décembre 2015 Status report on SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin- Chassard, Christophe.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN.
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Front-End electronics for Future Linear Collider calorimeters C. de La Taille IN2P3/LAL Orsay On behalf of the CALICE collaboration
Front-End electronics for Future Linear Collider W-Si calorimeter physics prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
1 Front-end electronic for Si-W calorimeter Sylvie Bondil Julien Fleury Christophe de La Taille Gisèle Martin Ludovic Raux.
25 juin 2010DPallin sLHC_Tile meeting1 Tilecal VFE developments at Clermont-Ferrand June 2010 Status G Bohner, J Lecoq, X Soumpholphakdy F Vazeille, D.
1 Second generation Front-end chip for H-Cal SiPM readout : SPIROC Réunion EUDET France – LAL – jeudi 5 avril 2007 M. Bouchel, F. Dulucq, J. Fleury, C.
Front-end Electronic for the CALICE ECAL Physic Prototype Christophe de La Taille Julien Fleury Gisèle Martin-Chassard Front-end Electronic for the CALICE.
Electronics for Si-W calorimeter LCWS06 Bangalore – March, 10 th Gérard Bohner, Pascal Gay, Jacques Lecoq Samuel Manen, Laurent Royer Michel Bouchel, Bernard.
VFE & PCB Status & schedule of production Presented by Julien Fleury Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting London 2008.
SKIROC status Calice meeting – Kobe – 10/05/2007.
Tuesday, 20 May 2003OPERA Collaboration Meeting - Gran Sasso1 Status of front-end electronics for the OPERA Target Tracker LAL Orsay S.BONDIL, J. BOUCROT,
Front End. Charge pre-amp and detector Voltage regulator. TOP side. Detector linear voltage regulator BOTTOM side. Charge pre-amp.
Organization for Micro-Electronics desiGn and Applications HGCAL Front-End Electronics Christophe de LA TAILLE, Marcello MANNELLI sept 2015.
CALICE ECAL meeting VFE ASIC Next & next to next version 17 Janvier 2006, LAL Orsay.
Status of front-end electronics for the OPERA Target Tracker
PADME Front-End Electronics
STATUS OF SPIROC measurement
3-bit threshold adjustment
A 12-bit low-power ADC for SKIROC
KLOE II Inner Tracker FEE
A General Purpose Charge Readout Chip for TPC Applications
ECAL front-end electronic status
Calorimeter Mu2e Development electronics Front-end Review
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
INFN Pavia and University of Bergamo
DHCAL TECH PROTO READOUT PROPOSAL
High speed pipelined ADC + Multiplexer for CALICE
R&D activity dedicated to the VFE of the Si-W Ecal
Hugo França-Santos - CERN
Electronics for Si-W calorimeter
Electronics for the E-CAL physics prototype
A Fast Binary Front - End using a Novel Current-Mode Technique
EUDET – LPC- Clermont VFE Electronics
Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard
1 Gbit/s Serial Link 1 Gbit/s Data Link Using Multi Level Signalling
Christophe de La Taille, Julien Fleury, Gisèle Martin-Chassard
STATUS OF SKIROC and ECAL FE PCB
ECAL Electronics Status
BESIII EMC electronics
SKIROC status Calice meeting – Kobe – 10/05/2007.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Signal processing for High Granularity Calorimeter
The ATLAS LAr. Calibration board K. Jakobs, U. Schaefer, D. Schroff
Front-end Electronics for the LHCb Preshower Rémi CORNAT, Gérard BOHNER, Olivier DESCHAMPS, Jacques LECOQ, Pascal PERRET LPC Clermont-Ferrand.
Presented by T. Suomijärvi
2007 TWEPP – Prague – September 3-7, 2007
Presentation transcript:

Front-end electronics dedicated to the next generation of linear collider calorimeter CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY Gérard BOHNER Christophe de la TAILLE Jacques LECOQ Gisèle MARTIN 16 september LECC 2004 16 september 2004

OUTLINE Requirements for ECAL Electronics synoptic Low noise preamplifier Shaper Pipeline analog to digital converter Gain 2 amplifier. The comparator. Conclusion and schedule. 16 september LECC 2004

Requirements for ECAL ECAL : Barrel with sandwich silicon-tungsten structure composed of 40 layers of reading with diodes of 1cm². 34 Millions channels very low consumption Pulsed power supply. Large dynamic range typically 14-15 bits and accuracy about 8bits. Multi-gain system. Train = 3000 Bunch-crossing every 200ms. BX = between 150ns-300ns. Slow system. Bunch Digitization 0 1,05ms 200ms 16 september LECC 2004

Electronics integration Wafer Cooling VFE chip PCB Tungsten Al Chip embedded in detector. Reduce line capacitance → reduce preamplifier consumption to obtain a noise less than 1/10 MIP (MIP= 40,000 e-). Reduce crosstalk. Electromagnetic shower on chip??? Cooling issues. Sensor (diode) is a wafer 6cm*6cm so 1 chip for 36 channels. 34 Millions channels → 950,000 chips. 34 Millions channels → 3,400 m² silicon. 16 september LECC 2004

Electronics synoptic Shaper Channel Selection 6 bits Ch1 M U G M E R Y CM to DM Preamplifier M U X Energy 10 bits A D C BXID 12 bits Comparator Gain 2 bits POWER CONTROL 16 september LECC 2004

Technology choice for R&D The electronics for front-end will be mixed Need good digital performance. Need good analog performance. As cheap as possible. Our choice AMS 0.35µm CMOS (c35b4) Perennity because used by car industry. Two transistors type. Transistor 3.3V for digital block. Transistor 5V for analog block. 16 september LECC 2004

THE PREAMPLIFIER Ch1 Preamplifier Ch2 Ch36 16 september LECC 2004

Low noise preamplifier MIP is fixed by silicon wafer depth: 500µm so 40,000e- Noise is defined as MIP/10 so 4000e-. Two types of noise : Serial noise : The noise 1/f is neglected because we have a transistor Pmos in input. Parallel noise : Use a big transistor Pmos to have important gm. Large W 2000µm. Small L 0,5µm. Need current Ids=200µA (power limited 1mW for preamplifier). 16 september LECC 2004

Schematic of the preamplifier Standard charge preamplifier Low consumption: below 1mW Low noise: about 1nV/√Hz 50 1 0.2pF 0.4pF 0.8pF 1.6pF 1pF 2pF 4pF IN IDLE OUT Technology: AMS CMOS 0.35µm Submission: April 19th 2004 LAL Orsay (J.Fleury) 16 september LECC 2004

Electronics synoptic Ch1 Shaper Ch2 Ch36 16 september LECC 2004

Two alternatives of filtering Shaper CRRC² gm=10mA/V→en=1.1nV/√Hz Ig=30nA →in=100fA/ √Hz ENC=1,430e- Advantage: System well known Inconvenient: Takes a large place with resistances Slow reset, probably pile-up. Switched integrator Same conditions ENC=1,660e- Advantage: Good integration of switch No pile-up Note: Need a command signal Shaper Shaper 16 september LECC 2004

Amplifier of the shaper Development of an amplifier in two technologies : Shaper is built with an amplifier used as integrator in 0.8µm BiCMOS. Gain 100 amplifier in 0.35µm CMOS to define offset. Mixing of two schematics An amplifier with resistive common mode feedback. A differential amplifier with input and output rail to rail. 16 september LECC 2004

Differential amplifier with resistive common mode feedback Emitter follower Active load Vin+ Vin- Vref Vout2 Differential input Vout1 Resistive common mode feedback 16 september LECC 2004

Differential amplifier with rail to rail input output Two active Load Rail to rail output Vin+ Vin- Vout Two input differential pairs 16 september LECC 2004

Amplifier CMOS Rail to rail differential output Resistive common mode In1 In2 gnd Out1 Resistive common mode feedback Differential input Pmos and Nmos Out2 Power Supply ±2,5V Consumption 300µA Gain-bandwidth 50M In1 In2 gnd 16 september LECC 2004

Amplifier: some tests results Two versions of amplifier One in 0.8µm with the amplifier in integrator. OK. One in 0.35µm with the gain 100 amplifier : Offset measured=1mV, so good matching. Reset Differential output Differential clock 16 september LECC 2004

Electronics synoptic Ch1 ADC Ch2 Ch36 16 september LECC 2004

The chip in technology 0.35µm CSI Chip developed and tested in 2003. Area 6.25 mm. ADC 10 bits 2.5mm Comparator 2.5mm Gain 100 Amplifier Gain 2 amplifier 16 september LECC 2004

ADC pipeline schematic principle 10 bits ADC → 10 stages Vin b1 b2 b3 b4 b5 b6 b7 b10 b9 b8 S/H ∑ DAC ADC 2x b Conversion of 1 bit per stage presently 16 september LECC 2004

ADC equivalent scheme  Bit N out =1 and Vin(N+1)=(Vin-Vref)*2 Two cases : If Vin > Vref  Bit N out =1 and Vin(N+1)=(Vin-Vref)*2 If Vin < Vref  Bit N out =0 and Vin(N+1)=Vin*2 Comparator Vref VIN Amplifier Gain=2 Gnd Bit N out To VIN stage N+1 What we need: An amplifier in gain 2. A comparator. 16 september LECC 2004

Layout capacitance with C=300fF (18.5*18.5µm) Gain 2 amplifier Gain 2 amplifier is identical to the shaper one. Hard to do a gain 2 to obtain 10 bits. C Amplifier 2C Vin+ Vref- gnd Vref+ Vin- C Layout capacitance with C=300fF (18.5*18.5µm) Tests results: Average gain=2.01±0.02 Average offset=-4±4mV 16 september LECC 2004

Comparator CMOS Active Load Latch Dynamic memory Inverter Out1 Out2 In1 In2 Latch Dynamic memory Inverter Folded cascode differential input Emitter follower Comparator is used in other IN2P3 laboratories. 16 september LECC 2004

Comparator tests and simulation results Power Supply ±2,5V Consumption 100µA Clock frequency 5MHz Sensitivity 300nV Offset 9mV Sensitivity 300µV Offset average 11mV Noise Simulation parasitic results Tests results CONCLUSIONS: Very good modelisation. Must improve offset due to parasitic capacitance. Sensitivity in test correspond to the noise of system. 16 september LECC 2004

Simulations and tests results for ADC First simulation results successful but in fact this simulation was done without parasitic capacitance…!!! TESTS: Functionality verified. 5 first bits are obtained. SIMULATION with parasitic: Problems of stability with amplifier. Very important error on output code. Power supply ± 2,5V Dissipation 20mW Input ±1V Clock 5MHz 16 september LECC 2004

New ADC pipeline 10 bits in 0.35µm C35B4 Chip send in July 2004. Area 4.17 mm. 10 stages 1.92mm 2.17 mm 16 september LECC 2004

Improvements done for ADC Polysilicium high resistivity permits to draw big resistance Occupy less place on silicon. AMPLIFIER: Amplifier stabilization with higher RC on rail to rail output. New layout for gain 2: more compact to obtain better matching. COMPARATOR: Offset improvement. More important power supply decoupling. Simulation results with parasitic this time 10 bits obtained, wait and see for tests in October 2004. C 16 september LECC 2004

Conclusion One possible global scheme of the FE electronic exists. Two possibilities of filtering OK. Shaper CRRC² Switched integrator Charge preamplifier, a shaper and a comparator CMOS exist. 16 september LECC 2004

Schedule News improvements for ADC: 1.5 bit per stage for consumption. Not exactly the same block for 10 stages. To reduce consumption only one master current for all amplifiers and comparators. Perhaps, need digital correction. Not realized for the moment. Offset correction for amplifier?... 16 september LECC 2004