R&D activity dedicated to the VFE of the Si-W Ecal

Slides:



Advertisements
Similar presentations
R&D for ECAL VFE technology prototype -Gerard Bohner -Jacques Lecoq -Samuel Manen LPC Clermond-Ferrand, Fr -Christophe de La Taille -Julien Fleury -Gisèle.
Advertisements

SKIROC New generation readout chip for ECAL M. Bouchel, J. Fleury, C. de La Taille, G. Martin-Chassard, L. Raux, IN2P3/LAL Orsay J. Lecoq, G. Bohner S.
18/05/2015 Calice meeting Prague Status Report on ADC LPC ILC Group.
7 th International Meeting on Front-End Electronics, Montauk NY – May 18 th - 21 st, 2009 Cyclic-ADC developments for Si calorimeter of ILC Laurent ROYER,
Design and Implementation a 8 bits Pipeline Analog to Digital Converter in The Technology 0.6 μm CMOS Process Eri Prasetyo.
Introduction to Analog-to-Digital Converters
SiLC Front-End Electronics LPNHE Paris March 15 th 2004.
Development of novel R/O electronics for LAr detectors Max Hess Controller ADC Data Reduction Ethernet 10/100Mbit Host Detector typical block.
L. Gallin-Martel, D. Dzahini, F. Rarbi, O. Rossetto
Oct, 2000CMS Tracker Electronics1 APV25s1 STATUS Testing started beginning September 1 wafer cut, others left for probing 10 chips mounted on test boards.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
Second generation Front-end chip for H-Cal SiPM readout : SPIROC DESY Hamburg – le 13 février 2007 M. Bouchel, F. Dulucq, J. Fleury, C. de La Taille, G.
S.Manen– IEEE Dresden – Oct A custom 12-bit cyclic ADC for the electromagnetic calorimeter of the International Linear Collider Samuel.
Calorimeter upgrade meeting – Phone Conference– May 5 th 2010 First prototyping run Upgrade of the front end electronics of the LHCb calorimeter.
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
Organization for Micro-Electronics desiGn and Applications HARDROC 3 for SDHCAL OMEGA microelectronics group Ecole Polytechnique CNRS/IN2P3, Palaiseau.
L.ROYER – TWEPP Lisbon – Sept-Oct A Dedicated Front-End ASIC for the ATLAS TileCal Upgrade L.Royer, S.Manen, N.Pillet, H.Chanal, R.Vandaële,
Vendredi 18 décembre 2015 Status report on SPIROC chips Michel Bouchel, Stéphane Callier, Frédéric Dulucq, Julien Fleury, Gisèle Martin- Chassard, Christophe.
L.Royer– Calice LLR – Feb Laurent Royer, J. Bonnard, S. Manen, P. Gay LPC Clermont-Ferrand R&D pole MicRhAu dedicated to High.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN.
L.Royer – Calice Manchester – Sept A 12-bit cyclic ADC dedicated to the VFE electronics of Si-W Ecal Laurent ROYER, Samuel MANEN LPC Clermont-Ferrand.
Analog to Digital Converters
BeamCal Electronics Status FCAL Collaboration Meeting LAL-Orsay, October 5 th, 2007 Gunther Haller, Dietrich Freytag, Martin Breidenbach and Angel Abusleme.
LC Power Distribution & Pulsing Workshop, May 2011 Super-ALTRO Demonstrator Test Results LC Power Distribution & Pulsing Workshop, May nd November.
Low Power, High-Throughput AD Converters
1 Front-End R and D in HEP (Room temperature and Cryogenic Temperature) Mains analog blocks Charge Sensitive Amplifier Shapers Buffer  ILC (DHCAL et ECAL)
Low Power, High-Throughput AD Converters
SKIROC ADC measurements and cyclic ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting Orsay June.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
ASIC Development for Vertex Detector ’07 6/14 Y. Takubo (Tohoku university)
Aurore Savoy-Navarro 1), Albert Comerma 2), E. Deumens 3), Thanh Hung Pham 1), Rachid Sefri 1) 1) LPNHE-Université Pierre et Marie Curie/IN2P3-CNRS, Fr.
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
June 13rd, 2008 HARDROC2. June 13rd, 2008 European DHCAL meeting, NSM 2 HaRDROC1 architecture Variable gain (6bits) current preamps (50ohm input) One.
CMOS Analog Design Using All-Region MOSFET Modeling
1 Progress report on the LPSC-Grenoble contribution in micro- electronics (ADC + DAC) J-Y. Hostachy, J. Bouvier, D. Dzahini, L. Galin-Martel, E. Lagorio,
Low Power, High-Throughput AD Converters
Analog Circuits Hiroyuki Murakami. CONTENTS Structure of analog circuits Development of wide linear range CSA system Problem of analog circuits How to.
CALICE/EUDET developments in electronics C. de La Taille IN2P3/LAL Orsay.
1 Status Report on ADC LPC Clermont-Ferrand Laurent ROYER, Samuel MANEN Calice/Eudet electronic meeting London 2008.
SKIROC status Calice meeting – Kobe – 10/05/2007.
SOCLE Meeting Dec Roman Pöschl LAL Orsay On behalf of the groups performing Electronics R&D - Introduction - SKIROC2 – Handling the large Dynamic.
3-bit threshold adjustment
A 12-bit low-power ADC for SKIROC
A General Purpose Charge Readout Chip for TPC Applications
ECAL front-end electronic status
B.Sc. Thesis by Çağrı Gürleyük
ASIC PMm2 Pierre BARRILLON, Sylvie BLIN, Selma CONFORTI,
HR3 status.
Status of ROC chips C. De La Taille for the OMEGA group
High speed pipelined ADC + Multiplexer for CALICE
High speed 12 bits Pipelined ADC proposal for the Ecal
Hugo França-Santos - CERN
Electronics for Si-W calorimeter
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
Front-End electronics for CALICE Calorimeter review Hamburg
A Low Power Readout ASIC for Time Projection Chambers in 65nm CMOS
EUDET – LPC- Clermont VFE Electronics
LHCb calorimeter main features
02 / 02 / HGCAL - Calice Workshop
STATUS OF SKIROC and ECAL FE PCB
BESIII EMC electronics
SKIROC status Calice meeting – Kobe – 10/05/2007.
Turning photons into bits in the cold
SKIROC status CERN – CALICE/EUDET electronic & DAQ meeting – 22/03/2007 Presented by Julien Fleury.
Signal processing for High Granularity Calorimeter
Presented by T. Suomijärvi
Errol Leon, Analog Applications Precision Linear Analog Applications
Presentation transcript:

R&D activity dedicated to the VFE of the Si-W Ecal L.Royer, S.Manen

ADC development A/D conv. DAQ IDLE MODE Main requirements for the ADC: Resolution: 12 bits with 2-gain shaping Time of conversion: time budget of 500 µs to convert all data of all triggered channels Ultra low power: power budget of 2.5 µW/ch (10% of one VFE channel power budget) Memory depth of 5  0.5 µW per conversion Power pulsing needed Die area: as smal as possible… Analog electronics busy A/D conv. DAQ IDLE MODE 1ms (.5%) .5ms (.25%) .5ms (.25%) 198ms (99%)

The cyclic ADC designed (03/08) Clock frequency: 1MHz Supply voltage : 3.5V Technology: 0.35 µm CMOS Austriamicrosystems (reliable and cheap !!) ADC designed with the validated building blocks (Amplifier & Comparator) of a 10-bit pipeline ADC (published in IEEE NSS in June 08) but optimized for the 12-bit precision requirement Power pulsing system implemented Digital process of the bits (1.5 bit/stage algorithm) performed by an external FPGA Fully differential ADC: analog signal, reference, clock… Die area of the core = 0.12mm2

Power pulsing measurement 1 µs for recovery time included after power ON Measurement of consumption with duty cycle power ON/OFF Master current sources switched OFF Integrated consumption with ILC timing : 0.12 µW per conversion

Summarized performance of the ADC ADC version Yield INL of 6 chips (mean ± ) Noise (rms) Consumption*** Die area* March 08 6/10 (3.6 ± 1.2) LSB 0.84 LSB 3.5 mW * 0.12 µW w/ PP ** 0.12mm2 * without the digital block ** power pulsing with duty ratio of 1% *** for one conversion

Improvement of the performance of the ADC New cyclic ADC submitted to run in 03/09: Reduction of power supply voltage: 3.5V to 3.0V Optimization (reduction) of BW performance of the amplifier Improvement of the yield: reduction of biasing variation versus process fluctuation  single stage amplifier ADC version Yield INL of 10 chips (mean ± ) Noise (rms) Consumption*** Die area* March 08 6/10 (3.6 ± 1.2) LSB 0.84 LSB 3.5 mW * 0.12 µW w/ PP ** 0.12mm2 March 09 10/10 (3.0 ± 0.8) LSB 0.3 LSB 1.5 mW * 0.05 µW w/ PP ** * without the digital block ** power pulsing with duty ratio of 1% *** for one conversion Equivalent to a Capacitance mismatch of about 1 fF !!

Shaper & analog memory OTA T OTA Two types of filtering: CRRC shaper  Skiroc chip gated integrator  to be evaluated OTA CRRC shaper T OTA Gated integrator

Simulated schematic view The gated integrator Intrinsic memory with capacitor used for integration Fast Reset  less pile-up Improvement of the filtering ? Auto-trigger Switches block control Simulated schematic view amp. ampli. ½ MIP dummy

Channel designed for evaluation Power consumption per channel : 6.5mW Error in LSB Chip submitted to run in July 09 Output code Simulated Integral Non-Linearity

Conclusion "Long is the road …" 2-gain shaper w/ gated integrator 2002 2-gain shaper w/ gated integrator analog memory 2007 Low power ADC: 10-bit pipeline 12-bit cyclic 2008 Single VFE channel including ADC 1.5 mW 6.5 mW 2009 Next steps Improvement of the precision of ADC Reference voltages sources Multi-channel chip Power pulsing management Digital block inside the chip Improvement of the consumption …