From Gene to Protein How Genes Work.

Slides:



Advertisements
Similar presentations
From Gene to Protein How Genes Work
Advertisements

From Gene to Protein Chapter 17 - Campbell.
WARMUP Give three differences and three similarities between DNA and RNA.
DNA gets all the glory, but proteins do all the work!
Nucleic Acids Examples: Structure: RNA (ribonucleic acid)
Protein Synthesis Notes
From Gene to Protein.
From Gene to Protein Chapter 17 - Campbell What do genes code for? proteins All the traits of the body How does DNA code for cells & bodies?  how are.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
MCC BP Based on work by K. Foglia Chapter 17. From Gene to Protein.
AP Biology Lecture #33 Translation.
From Gene to Protein How Genes Work
AP Biology Warmup 11/12 Differentiate a codon and an anitcodon. Which do you use to read the following chart?
AP Biology From Gene to Protein How Genes Work.
AP Details for Protein Synthesis 2014 From gene to protein.
AP Biology Chapter 17. From Gene to Protein.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work AP Biology What do genes code for? proteinscellsbodies How does DNA code for cells & bodies?  how are.
Protein Synthesis.
From Gene to Protein How Genes Work
AP Biology From Gene to Protein How Genes Work AP Biology What do genes code for? proteinscellsbodies How does DNA code for cells & bodies?  how are.
Today… Turn in Bozeman homework Complete DNA modeling activity Lecture notes on Transcription & Translation POGIL Homework assigned: read article from.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
From Gene to Protein proteinscellsbodies How does DNA code for cells & bodies? DNA.
AP Biology Chapter 17. From Gene to Protein.
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
from nucleic acid language to amino acid language
Chapter 17: From Gene to Protein
From Gene to Protein How Genes Work (Ch. 17).
From gene to protein DNA mRNA protein trait nucleus cytoplasm
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work.
Translation Unit 5B.4.
From Gene to Protein How Genes Work
1/9/14 Grades posted Questions from quiz
Ch 17 - From Gene to Protein
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
Transcription Unit 5B.3.
From Gene to Protein How Genes Work
From Gene to Protein Chapter 17.
From Gene to Protein.
From Gene to Protein Chapter 17 - Campbell.
From Gene to Protein How Genes Work
from nucleic acid language to amino acid language
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
Transcription Credit for the original presentation is given to Mrs. Boyd, Westlake High School.
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
From Gene to Protein Chapter 17 - Campbell.
Pop-Quiz.
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
An introduction to biotechnology
Chp.17 From Gene to Protein How Genes Work
From Gene to Protein How Genes Work.
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
from nucleic acid language to amino acid language to PROTEIN language
From Gene to Protein Chapter 17 - Campbell.
Presentation transcript:

From Gene to Protein How Genes Work

DNA gets all the glory, but proteins do all the work! The “Central Dogma” Flow of genetic information in a cell How do we move information from DNA to proteins? transcription translation DNA RNA protein trait To get from the chemical language of DNA to the chemical language of proteins requires 2 major stages: transcription and translation DNA gets all the glory, but proteins do all the work! replication

Metabolism taught us about genes Inheritance of metabolic diseases suggested that genes coded for enzymes each disease (phenotype) is caused by non-functional gene product lack of an enzyme Tay sachs PKU (phenylketonuria) albinism Am I just the sum of my proteins? metabolic pathway disease disease disease disease A B C D E     enzyme 1 enzyme 2 enzyme 3 enzyme 4

one gene : one enzyme hypothesis 1941 | 1958 Beadle & Tatum one gene : one enzyme hypothesis George Beadle Edward Tatum "for their discovery that genes act by regulating definite chemical events"

Beadle & Tatum Wild-type Neurospora Minimal medium Select one of the spores Grow on complete medium control Nucleic acid Choline Pyridoxine Riboflavin Arginine Minimal media supplemented only with… Thiamine Folic Niacin Inositol p-Amino benzoic acid Test on minimal medium to confirm presence of mutation Growth on complete X rays or ultraviolet light asexual spores create mutations positive control negative control mutation identified experimentals amino acid supplements

DNA mRNA protein trait From gene to protein nucleus cytoplasm aa From gene to protein nucleus cytoplasm transcription translation DNA mRNA protein ribosome trait

from DNA nucleic acid language to RNA nucleic acid language Transcription from DNA nucleic acid language to RNA nucleic acid language

DNA RNA RNA ribose sugar N-bases single stranded lots of RNAs uracil instead of thymine U : A C : G single stranded lots of RNAs mRNA, tRNA, rRNA, siRNA… transcription DNA RNA

Transcription Making mRNA transcribed DNA strand = template strand untranscribed DNA strand = coding strand similar sequence as RNA synthesis of complementary RNA strand transcription bubble enzyme RNA polymerase coding strand 3 A G C A T C G T 5 A G A A A G T C T T C T C A T A C G DNA T 3 C G T A A T 5 G G C A U C G U T 3 C unwinding G T A G C A rewinding mRNA RNA polymerase template strand build RNA 53 5

RNA polymerases 3 RNA polymerase enzymes RNA polymerase 1 only transcribes rRNA genes makes ribosomes RNA polymerase 2 transcribes genes into mRNA RNA polymerase 3 only transcribes tRNA genes each has a specific promoter sequence it recognizes

Which gene is read? Promoter region binding site before beginning of gene TATA box binding site binding site for RNA polymerase & transcription factors

Transcription Factors Initiation complex transcription factors bind to promoter region suite of proteins which bind to DNA (may be hormones) turn on or off transcription trigger the binding of RNA polymerase to DNA

Matching bases of DNA & RNA Match RNA bases to DNA bases on one of the DNA strands C U G A G U G U C U G C A A C U A A G C RNA polymerase U 5' A 3' G A C C T G G T A C A G C T A G T C A T C G T A C C G T

Eukaryotic genes have junk! Eukaryotic genes are not continuous exons = the real gene expressed / coding DNA introns = the junk inbetween sequence introns come out! intron = noncoding (inbetween) sequence eukaryotic DNA exon = coding (expressed) sequence

mRNA splicing Post-transcriptional processing eukaryotic mRNA needs work after transcription primary transcript = pre-mRNA mRNA splicing edit out introns make mature mRNA transcript intron = noncoding (inbetween) sequence eukaryotic RNA is about 10% of eukaryotic gene. ~10,000 bases eukaryotic DNA exon = coding (expressed) sequence pre-mRNA primary mRNA transcript ~1,000 bases mature mRNA transcript spliced mRNA

RNA splicing enzymes snRNPs Spliceosome several snRNPs small nuclear RNA proteins Spliceosome several snRNPs recognize splice site sequence cut & paste gene snRNPs exon intron snRNA 5' 3' spliceosome exon excised intron 5' 3' lariat mature mRNA No, not smurfs! “snurps”

Starting to get hard to define a gene! Alternative splicing Alternative mRNAs produced from same gene when is an intron not an intron… different segments treated as exons Starting to get hard to define a gene!

More post-transcriptional processing Need to protect mRNA on its trip from nucleus to cytoplasm enzymes in cytoplasm attack mRNA protect the ends of the molecule add 5 GTP cap add poly-A tail longer tail, mRNA lasts longer: produces more protein eukaryotic RNA is about 10% of eukaryotic gene. A 3' poly-A tail mRNA 5' 5' cap 3' G P 50-250 A’s

DNA mRNA protein trait From gene to protein nucleus cytoplasm aa From gene to protein nucleus cytoplasm transcription translation DNA mRNA protein ribosome trait

from nucleic acid language to amino acid language Translation from nucleic acid language to amino acid language

How does mRNA code for proteins? TACGCACATTTACGTACGCGG DNA 4 ATCG AUGCGUGUAAAUGCAUGCGCC mRNA 4 AUCG ? Met Arg Val Asn Ala Cys Ala protein 20 How can you code for 20 amino acids with only 4 nucleotide bases (A,U,G,C)?

mRNA codes for proteins in triplets TACGCACATTTACGTACGCGG DNA codon AUGCGUGUAAAUGCAUGCGCC mRNA AUGCGUGUAAAUGCAUGCGCC mRNA ? Met Arg Val Asn Ala Cys Ala protein

The code Code for ALL life! Code is redundant Start codon Stop codons strongest support for a common origin for all life Code is redundant several codons for each amino acid Strong evidence for a single origin in evolutionary theory. Start codon AUG methionine Stop codons UGA, UAA, UAG

How are the codons matched to amino acids? 3 5 DNA TACGCACATTTACGTACGCGG 5 3 mRNA AUGCGUGUAAAUGCAUGCGCC codon 3 5 UAC Met GCA Arg tRNA CAU Val anti-codon amino acid

Transfer RNA structure “Clover leaf” structure anticodon on “clover leaf” end amino acid attached on 3 end

tryptophan attached to tRNATrp tRNATrp binds to UGG condon of mRNA Loading tRNA Aminoacyl tRNA synthetase enzyme which bonds amino acid to tRNA bond requires energy “Wobble”- relaxed 3rd base pair rules, speeds up bonding bond is unstable so it can release amino acid at ribosome easily The tRNA-amino acid bond is unstable. This makes it easy for the tRNA to later give up the amino acid to a growing polypeptide chain in a ribosome. Trp C=O Trp Trp C=O OH H2O OH O C=O O activating enzyme tRNATrp A C C U G G mRNA anticodon tryptophan attached to tRNATrp tRNATrp binds to UGG condon of mRNA

Ribosomes Facilitate coupling of tRNA anticodon to mRNA codon organelle or enzyme? Structure ribosomal RNA (rRNA) & proteins 2 subunits large small E P A

Ribosomes A site (aminoacyl-tRNA site) P site (peptidyl-tRNA site) holds tRNA carrying next amino acid to be added to chain P site (peptidyl-tRNA site) holds tRNA carrying growing polypeptide chain E site (exit site) empty tRNA leaves ribosome from exit site Met U A C 5' U G A 3' E P A

Building a polypeptide 1 2 3 Building a polypeptide Initiation brings together mRNA, ribosome subunits, initiator tRNA Elongation adding amino acids based on codon sequence Termination end codon Leu Val release factor Ser Met Met Met Met Leu Leu Leu Ala Trp tRNA C A G U A C U A C G A C A C G A C A 5' U 5' U A C G A C 5' A A A U G C U G U A U G C U G A U A U G C U G A A U 5' A A U mRNA A U G C U G 3' 3' 3' 3' A C C U G G U A A E P A 3'

Can you tell the story? RNA polymerase DNA amino acids tRNA pre-mRNA exon intron tRNA pre-mRNA 5' GTP cap mature mRNA aminoacyl tRNA synthetase poly-A tail 3' large ribosomal subunit polypeptide 5' tRNA small ribosomal subunit E P A ribosome

The Transcriptional unit (gene?) enhancer 1000+b translation start translation stop exons 20-30b transcriptional unit (gene) RNA polymerase 3' TAC ACT 5' TATA DNA transcription start UTR introns transcription stop UTR promoter DNA pre-mRNA 5' 3' mature mRNA 5' 3' GTP AAAAAAAA

Protein Synthesis in Prokaryotes Bacterial chromosome Protein Synthesis in Prokaryotes Transcription mRNA Psssst… no nucleus! Cell membrane Cell wall

Prokaryote vs. Eukaryote genes Prokaryotes DNA in cytoplasm circular chromosome naked DNA no introns Eukaryotes DNA in nucleus linear chromosomes DNA wound on histone proteins introns vs. exons Walter Gilbert hypothesis: Maybe exons are functional units and introns make it easier for them to recombine, so as to produce new proteins with new properties through new combinations of domains. Introns give a large area for cutting genes and joining together the pieces without damaging the coding region of the gene…. patching genes together does not have to be so precise. introns come out! intron = noncoding (inbetween) sequence eukaryotic DNA exon = coding (expressed) sequence

Translation in Prokaryotes Transcription & translation are simultaneous in bacteria DNA is in cytoplasm no mRNA editing ribosomes read mRNA as it is being transcribed

Translation: prokaryotes vs. eukaryotes Differences between prokaryotes & eukaryotes time & physical separation between processes takes eukaryote ~1 hour from DNA to protein no RNA processing