H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
The DEPFET Active Pixel Sensor as Vertex Detector for the ILC
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
A new idea of the vertex detector for ILC Y. Sugimoto Nov
Development of Readout ASIC for FPCCD Vertex Detector 01 October 2009 Kennosuke.Itagaki Tohoku University.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
DEPFET Electronics Ivan Peric, Mannheim University.
Monolithic Pixels R&D at LBNL Devis Contarato Lawrence Berkeley National Laboratory International Linear Collider Workshop, LCWS 2007 DESY Hamburg, May.
Fine Pixel CCD Option for the ILC Vertex Detector
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Vertex Detector for GLD 3 Mar Y. Sugimoto KEK.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
Recent developments on Monolithic Active Pixel Sensors (MAPS) for charged particle tracking. Outline The MAPS sensor (reminder) MIMOSA-22, a fast MAPS-sensor.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
FPCCD option Yasuhiro Sugimoto 2012/5/24 ILD 1.
FPCCD Vertex detector 22 Dec Y. Sugimoto KEK.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
H.-G. Moser Max-Planck-Institut fuer Physik 1 st open meeting SuperBelle KEK Summary of PXD Session 1 Status of CAPSH. Hoedlmoser (Video)
26 June 2006Imaging2006, Stockholm, Niels Tuning 1/18 Tracking with the LHCb Spectrometer Detector Performance and Track Reconstruction Niels Tuning (Outer.
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
Prague, Marcel Trimpl, Bonn University DEPFET-Readout Concept for TESLA based on Current Mode Signal Processing Markus Schumacher on behalf.
FEE 2006, Perugia, Marcel Trimpl, University of Bonn VIth Workshop on Front End Electronics Perugia, Mai 2006 M.Trimpl DEPFET – collaboration:
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
The ultralight DEPFET Pixel Detector of the Belle II Experiment Florian Lütticke On behalf of the DEPFET Collaboration th.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
Simulation of a DEPFET Pixel Detector IMPRS Young Scientist Workshop July, 26 – 30, 2010 Christian Koffmane 1,2 1 Max-Planck-Institut für Physik, München.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
H.-G. Moser Max-Planck-Institut für Physik Future Vertex Detectors in HEP Projects: LHC (upgrade 2018+) Belle 2 (upgrade 2018+) ILC/CLIC (2020+)
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
H.-G. Moser Max-Planck-Institut fuer Physik DEPFET Meeting Heidelberg Sept DEPFET Geometry for SuperBelle Sensor Geometry Pixel Pitch Constant/variable.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Andrei Nomerotski 1 Andrei Nomerotski, University of Oxford Ringberg Workshop, 8 April 2008 Pixels with Internal Storage: ISIS by LCFI.
 Silicon Vertex Detector Upgrade for the Belle II Experiment
Readout electronics for aMini-matrix DEPFET detectors
First Testbeam results
DEPFET Active Pixel Sensors (for the ILC)
The Belle II Vertex Pixel Detector (PXD)
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
FPCCD Vertex Detector for ILC
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Niels Tuning (Outer Tracker Group LHCb)
FPCCD Vertex Detector for ILC
Presentation transcript:

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET collaboration RWTH Aachen University of Bonn University of Karlsruhe University of Mannheim MPI Munich, HLL Charles University Prague IFIC Valencia

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Outline  DEPFET Principle  DEPFET Matrix Operation  Projects in Particle and Astrophysics  ILC requirements  Thinning Technology (this morning)  DEPFET Test System  Laboratory Tests  Irradiation Tests  Beam Tests  Software and Simulations  New Developments: PXD5 Matrices, Switcher III, DCD1  Summary and Conclusions

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Principle Each pixel is a p-channel FET on a completely depleted bulk A deep n-implant creates a potential minimum for electrons under the gate (“internal gate”) Signal electrons accumulate in the internal gate and modulate the transistor current (g q ~ 400 pA/e - ) Accumulated charge can be removed by a clear contact (“reset”) Fully depleted:  large signal, fast signal collection Low capacitance, internal amplification: => low noise Transistor on only during readout: => low power Complete clear: => no reset noise Compact layout: Two pixel share common source and clear (“double pixel”)

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Matrix Operation Gates connected in rows (switch transistor on/off) Clear connected in rows Drain connected in columns (to current amplifier) Readout Cycle: Switch transistor on  Measure I 1 = I sig + I ped Apply fast clear  Measure I 2 = I ped Switch transistor off In the readout chip: subtract I 1 – I 2 = I sig (correlated sampling, suppress 1/f noise) Complete sample – clear sample cycle takes 50 ns Only one row active at a time Double rows: two rows read in parallel only 20 MHz line rate needed; double number of columns

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 X-Ray Imaging in Astrophysics: The XEUS mission Mission concept:  X-ray telescope consisting of two satelites, mirror (MSC) and detector (DSC) spacecraft  Formation flight; active control of focal length with 1 mm 3 accuracy  DEPFET proposed as wide field imager Fe55: 1.6 e- rms noise Other missions which will use DEPFETs Symbol-X Beppi-Colombo

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 The Linear Collider Project (ILC)  200 GeV < √s < 500 GeV  Integrated luminosity ~ 500 fb -1 in 4 years  One interaction region, two detectors (push-pull)  Need excellent vertex detectors: b- and c- tacking, vertex charge reconstruction, reconstruction of low p t -tracks (stand alone tracking)

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Impact parameter resolution: -> spatial resolution < 4  m -> pixel size 25 x 25  m 2 -> ~ 0.1% X 0 radiation length per layer ILC Timing: 2820 bunches within 950  sec Spacing ~ 300 ns One readout frame has to integrate many bunch crossings  High background rates: 0.04 hits/mm 2 /BX in the inner layer (1.5 cm) Occupancy of ~10% per bunchtrain 20 frames per train (1 ms) 40 MHz line rate => ½% Occup. (4096 lines along a 10cm module) Radiation Hard up to 360 kRad and n/cm 2 (10 years) ILC Requirements  (IP) r-  = 5  m 10  m p(GeV/c) sin 3/2 

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Detector Layout for ILC 5 layer detector 1 8 faces 1.3 x 10 cm 2 28 faces2x(2.0 x 12.5) cm faces 2x(2.0 x 12.5) cm faces2x(2.0 x 12.5) cm faces2x(2.0 x 12.5) cm 2

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Production in the MPI Semiconductor Laboratory: Two projects on one wafer XEUSILC purpose imaging spectroscopyparticle tracking sensor size 7.68 x 7.68 cm²1.3 x 10 cm², 2.2 x 12.5 cm² pixel size 75 µm25 µm sensor thickness µm50 µm noise 4 el. ENC~ 100 el. ENC Readout time per row2.5 µs20 ns

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPMOS Technology at HLL along the channel perpendicular to the channel (Clear region) Metal 2 Metal 1 Oxide Poly 2 Metal 2 Metal 1 Poly 2 Clear Gclear Channel p Deep n n+ Deep p Poly 1 Double Poly / Double Al Technology on highohmic 150mm substrate Double metal necessary for matrix operation Self-aligned implantations with respect to polysilicon electrodes => Reproducible potential distributions over large matrix areas Low leakage current level: < 200pA/cm² (fully depleted – 450µm)

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Test System Switcher II chip (Uni Mannheim)  64 channels with 2 analog MUX outputs (‘A’ and ‘B’)  Can switch up to 25 V  digital control ground + supply floating  fast internal sequencer for programmable pattern (operates up to 80MHz)  Present dissipation: 30MHz  0.8µm AMS HV technology (not rad hard <30kRad) Clear switcher (64 channels) Gate switcher (64 channels) DEPFET matrix (64x128) Readout chip (128 channels) CURO readout chip (Uni Bonn)  On-chip pedestal subtraction (correlated double sampling)  Real time hit finding and zero suppression  Hit addresses store in on-chip RAM  0.25µm CMOS technology  128 channels

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Lab Tests: Speed 1.6 e ENC at  =10  s 40 e ENC at  =20ns (50MHz) Measurements of a single pixel with an external high bandwidth amplifier. Intrinsic DEPFET noise sufficiently low for high speed operation at ILC High speed readout => high bandwidth => short shaping times Thermal noise of the DEPFET transistor ~ 1/SQRT(  )

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Lab Tests: Noise However system noise with CURO not satisfactory: ~ e- (lab; beam test) ~100 nA with 0 load capacitance => ~250 e g q = 400pA/e CURO was designed for small test matrices. Full size ILC matrices will have a large drain capacitance (5cm length -> 40 pF) New design of current readout chip needed (-> DCD1): -Improved noise performance -Optimization for large drain capacitances

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Radiation Hardness gamma, proton*, neutron* irradiations Berkely Typefluence ILC years  I thresh g m I leak (pixel) Gamma913 kRad ~30 ~4V = ~100fA Neutron2.4x10 11 n/cm 2 2 0V ~ 1.4 pA Protons3x10 12 n/cm 2 35 ~5V -15% 25.9 pA & 280 kRad Expected (10 years): 360 kRad (ionising) 8.5x10 11 n/cm 2 (NIEL) (LDC DOD)  Threshold voltage shift  Change of g m, g q  Traps: 1/f noise increase  Larger leakage currents

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Radiation Hardness D1 D2 S G1 G2 Cl non-irradiated V thresh ≈-0.2V, V gate =-2V time cont. shaping  =10 μs Noise ENC=1.6 e - (rms) at T>23 degC 912 krad 60 Co V thresh ≈-4.0V time cont. shaping  =10 μs Noise ENC=3.5 e - (rms) at T>23 degC Threshold voltage shift: can be compensated (~4V) NIEL: increase of leakage current => shot noise 3x10 12 n/cm 2 (35 ILC years): 95e C ( t frame = 50  s) 22 e C

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Beam Tests 6 Test beam periods: 3 DESY: 6 GeV/c; Si-strip telescope; resolution limited by multiple scattering 3 CERN: 120 GeV/c; DEPFET telescope; August & October 06, August 07 Sensors: -450  m thick -128 x 64 pixel a 36 x 22  m 2 + variations Speed: -Clear: 20ns -Line readout: 240ns -Corresponds to 4MHz However, actual rate lower because of full frame readout

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Beam Tests Signal contained in 3x3 cluster (~5 pixels) S/N = 112 (for 450  m thick sensors) Noise ~ 300 e - pickup of analogue output - front end noise… Resolution (  algorithm, observed-predicted) x (36  m pitch):3.8  m y (22  m pitch): 1.7  m Telescope with potentially submicron resolution

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 MC Studies DEPFET implemented in ILC/LDC Software framework (Mokka, Marlin) -Local Landau fluctuations -Geometry (5 layer as proposed) -Active and passive material -Drift and diffusion -Lorentz angle -Noise (100 e - ILC, 300 beam test) tuned to beam test data

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 MC Studies Spatial resolution for 50  m thick 25 x 25  m 2 pixels:<3.5  m (r-  ) <4.0  m (z) Impact parameter resolution (5 layers, frames, 500  m Be beam pipe)  (IP) r-  = 4.5  m 8.7  m p(GeV/c) sin 3/2  ILC requirements fulfilled

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 New Pixel Production New Pixel Production: PXD5 -Larger matrices: 512 x 512 (1.6 x 1.2 cm 2 ) 128 x 2048 (0.3 x 4.9 cm 2 ) -optimization clear  gain -variants: small pixels (20x20  m 2 ) shorter gate -> higher g q -Test structures for bump bonding -Ready in June First matrices in a beam test 512 x 512 pixels 16.4 x 12.3 mm 2 area simulation at I D =50 µA Laser scan

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Switcher III and DCD1 Switcher: -Radiation hard (AMS 0.35  m, layout) -10V swing (-> stacked transistors) -Low power (“0” standby current) -Fast settling (<4ns at 10 pF) -128 channels, compact layout (1.24 x 5.8 mm 2 ) -Full chip produced and tested rad hardness tested > 600kRad! Current Readout Chip: -Improved noise performance of regulated cascode especially at large load capacitances expect pF for 5cm long matrices simulation: pF -Fully differential analog processing -Fast 8 bit ADC (12.5MHz) for each channel -144 channels, 5mW per channel -No hit processing (done in a FPGA) -Rad hard layout (analogue part), UMC018 process -Test chip produced (72 ch), under test

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Power Consumption & Material Inner layer module: Matrix: active pixel: 500  W x W Switcher III* active row: 225 mW x W active chip: 50 mW x 20.1 W idle chips: 10 mW x W DCD1 (readout)*per channel: 5 mW x W ( * New ASIC versions) 12 W per module 8 modules in inner layer, 56 outer layer modules a 21W: 1272 W Assuming that the 1/200 duty cycle can be used: 6.4 W average for the full 5 layer detector Material budget (within acceptance) Sensor: 50  m Si: 0.05% X 0 Frame:450  m Si0.05 % X 0 Switcher: 50  m Si0.01 % X 0 Gold bumps:0.03 % X 0 Total:0.12 % X 0

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Summary and Conclusions DEPFET active pixel sensor Can be used as x-ray imager and high precision tracking detector Vertex detector at the ILC: -Thinning Technology established. -Low intrinsic noise at ILC bandwidth. -Radiation hardness demonstrated (Gamma, Proton & Neutron irradiations). -Test beam measurements with DEPFET based telescope. (<1  m extrapolation accuracy, 1.74  m resolution). -Software and simulation: reproduce beam test data. MC of ILC vertex detector -> ILC specifications fulfilled Next Steps: -Test large, ILC scale matrices, various improvements. -Test new readout & control ASIC (speed, noise, radiation hardness). -Operate system at ILC speed. Future Steps - Produce thinned matrices (2009).

H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 Alternative layout for high frame rates Increase frame rate by finer segmentation of module: cm column length instead of 5 cm -4 x frame rate at same basic readout speed -Lower capacitance (better S/N) Disadvantages: -Material -Power -Complex Routing Interconnection can be done using a 3D integration technique (SLID/IVD by IZM Fraunhofer)