H.Mathez– VLSI-FPGA-PCB Lyon– June. 5-6-7, 2012 CSA avec reset pour s-CMS, bruit en temporel (Up-Grade TRACKER) (Asic R&D Version 1)

Slides:



Advertisements
Similar presentations
Analog Electronics Workshop (AEW) Apr 3, Contents Intro to Tools Input Offset Input and Output Limits Bandwidth Slew Rate Noise EMIRR Filtering.
Advertisements

E. Atkin, E. Malankin, V. Shumikhin NRNU MEPhI, Moscow 1.
Specific requirements for analog electronics of a high counting rate TRD Vasile Catanescu NIHAM - Bucharest CBM 10th Collaboration Meeting Sept 25 – 28,
Electrical Noise Wang C. Ng.
1 H-Cal front-end ASIC Status LAL Orsay J. Fleury, C. de la Taille, G. Martin, L. Raux.
August SGSS front end, Summary August 2008 Edwin Spencer, SCIPP1 SGST Preview SCIPP, UC Santa Cruz Andrey Martchovsky Gregory Horn Edwin Spencer.
5ns Peaking Time Transimpedance Front End Amplifier for the Silicon Pixel Detector in the NA62 Gigatracker E. Martin a,b J. Kaplon b, A. Ceccucci b, P.
NA62 front end Layout in DM option Jan Kaplon/Pierre Jarron.
NA62 front end architecture and performance Jan Kaplon/Pierre Jarron.
A.Kashchuk Muon meeting, CERN Presented by A.Kashchuk.
Calorimeter upgrade meeting – CERN – October 5 th 2010 Analog FE ASIC: first prototype Upgrade of the front end electronics of the LHCb calorimeter E.
CCD Clocking and Biasing CABAC_0 : Design Test_0 : Design Pierre Antilogus (from a Hervé Lebbolo’s talk) BNL, Raft Electronic Workshop January 25 th 2012.
14-5 January 2006 Luciano Musa / CERN – PH / ED General Purpose Charge Readout Chip Nikhef, 4-5 January 2006 Outline  Motivations and specifications 
AIDA design review Davide Braga Steve Thomas ASIC Design Group 9 January 2008.
Switched capacitor DC-DC converter ASICs for the upgraded LHC trackers M. Bochenek 1,2, W. Dąbrowski 2, F. Faccio 1, S. Michelis 1 1. CERN, Conseil Européen.
Challenges and advantages making analog front-ends (for Silicon Strip Detectors) in deep submicron technologies Jan Kaplon.
L.Royer– Calice DESY – July 2010 Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand R&D LPC Clermont-Fd dedicated to the.
L.Royer– TWEPP – 22 Sept Laurent ROYER, Samuel MANEN, Pascal GAY LPC Clermont-Ferrand Signal processing for High Granularity Calorimeter: Amplification,
Silicon Sensor with Readout ASICs for EXAFS Spectroscopy Gianluigi De Geronimo, Paul O’Connor Microelectronics Group, Instrumentation Division, Brookhaven.
Module 4 Operational Amplifier
Preliminary measurements for the 8 channel prototype of SPD discriminator ASIC I.The 8 channel prototype. II.Status of the test. III.Noise. IV.Gain. V.Test.
VI th INTERNATIONAL MEETING ON FRONT END ELECTRONICS, Perugia, Italy A. Dorokhov, IPHC, Strasbourg, France 1 NMOS-based high gain amplifier for MAPS Andrei.
ECE4430 Project Presentation
Progress on STS CSA chip development E. Atkin Department of Electronics, MEPhI A.Voronin SINP, MSU.
Peter, Wieczorek - EE Low Noise Charge Sensitive Preamplifier Development for the PANDA Calorimeter Design and Measurements of the APFEL - Chip.
LEPSI ir e s MIMOSA 13 Minimum Ionising particle Metal Oxyde Semi-conductor Active pixel sensor GSI Meeting, Darmstadt Sébastien HEINI 10/03/2005.
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Update on CLICpix design
L.ROYER – TWEPP Oxford – Sept The chip Signal processing for High Granularity Calorimeter (Si-W ILC) L.Royer, J.Bonnard, S.Manen, X.Soumpholphakdy.
NA62 Gigatracker Working Group Meeting 23 March 2010 Massimiliano Fiorini CERN.
Hold signal Variable Gain Preamp. Variable Slow Shaper S&H Bipolar Fast Shaper 64Trigger outputs Gain correction (6 bits/channel) discriminator threshold.
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
1 Luciano Musa, Gerd Trampitsch A General Purpose Charge Readout Chip for TPC Applications Munich, 19 October 2006 Luciano Musa Gerd Trampitsch.
Electronic Noise Noise phenomena Device noise models
Development of radiation hard Sensors & Cables for the CBM Silicon Tracking System Sudeep Chatterji On behalf of CBM-STS Collaboration GSI Helmholtz Centre.
S. Bota – Calorimeter Electronics overview - July 2002 Status of SPD electronics Very Front End Review of ASIC runs What’s new: RUN 4 and 5 Next Actions.
(Re)design of the C3PD analog pixel 1. The starting point for the design was the CCPDv3 front-end (this presentation tries to follow the way the design.
M. TWEPP071 MAPS read-out electronics for Vertex Detectors (ILC) A low power and low signal 4 bit 50 MS/s double sampling pipelined ADC M.
Calorimeter upgrade meeting – LAL /Orsay – December 17 th 2009 Low noise preamplifier Upgrade of the front end electronics of the LHCb calorimeter.
Front-End electronics for Future Linear Collider W-Si calorimeter physics prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay.
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
CMOS 2-Stage OP AMP 설계 DARK HORSE 이 용 원 홍 길 선
25 juin 2010DPallin sLHC_Tile meeting1 Tilecal VFE developments at Clermont-Ferrand June 2010 Status G Bohner, J Lecoq, X Soumpholphakdy F Vazeille, D.
TIMEPIX2 FE STUDIES X. Llopart. Summary of work done During summer I have been looking at a possible front end for Timepix2 The baseline schematic is.
CMOS Analog Design Using All-Region MOSFET Modeling
1 C. Ballif 3, W. Dabrowski 2, M. Despeisse 3, P. Jarron 1, J. Kaplon 1, K. Poltorak 1,2 N. Wyrsch 3 1 CERN, Geneva, Switzerland 2 Faculty of Physics and.
Analog Front End For outer Layers of SVT (L.4 & L.5) Team:Luca BombelliPost Doc. Bayan NasriPh.D. Student Paolo TrigilioMaster student Carlo FioriniProfessor.
CEA DSM Irfu IDeF-X HD Imaging Detector Front-end for X-ray with High Dynamic range Alicja Michalowska, CEA-IRFU 1 Journées VLSI June 2010.
The design of fast analog channels for the readout of strip detectors in the inner layers of the SuperB SVT 1 INFN Sezione di Pavia I Pavia, Italy.
Preamplifier R&D at University of Montreal for the drift chamber J.P. Martin, Paul Taras.
“Test vehicle” in 130nm TSMC for CMS HGCAL
M. Manghisoni, L. Ratti Università degli Studi di Pavia INFN Pavia
KLOE II Inner Tracker FEE
Pixel front-end development
A General Purpose Charge Readout Chip for TPC Applications
Charge sensitive amplifier
SUMMING AMPLIFIER INTEGRATOR DIFFERENTIATOR COMPARATOR
Analog FE circuitry simulation
HPD with external readout
Igor Mandić1, Vladimir Cindro1, Gregor Kramberger1 and Marko Mikuž1,2
CALICE COLLABORATION LPC Clermont LAL Orsay Samuel MANEN Julien FLEURY
A Fast Binary Front - End using a Novel Current-Mode Technique
1 Gbit/s Serial Link 1 Gbit/s Data Link Using Multi Level Signalling
MCP Electronics Time resolution, costs
HARDROC STATUS 17 mar 2008.
Signal processing for High Granularity Calorimeter
Readout Electronics for Pixel Sensors
Readout Electronics for Pixel Sensors
Igor Mandić1, Vladimir Cindro1, Gregor Kramberger1 and Marko Mikuž1,2
Readout Electronics for Pixel Sensors
Presentation transcript:

H.Mathez– VLSI-FPGA-PCB Lyon– June , 2012 CSA avec reset pour s-CMS, bruit en temporel (Up-Grade TRACKER) (Asic R&D Version 1)

H.Mathez– VLSI-FPGA-PCB Lyon– June , CSA Requirements  Qin = 1.2 fC to 10 fC (7.5 ke-, 62 ke-)  Charge Collection Time = 10ns  Cd = 5pF  Power supply < 200 µW/amplifier  F_slhc = 20 Mhz (version 1) or 40 Mhz  Output pulse < 50ns  S/N = 20 (before irradiation)  ENC = 700 e- if Q = e- = 2.4 fC (before irradiation) Q is the most probable value for a Landau distribution of input charge  S/N = 10 (after irradiation)  ENC = 700 e- if Q = 7500 e- = 1.2 fC (after irradiation)  Front-End in AC coupling mode

H.Mathez– VLSI-FPGA-PCB Lyon– June , Schematic - Power Supply 115µA 10µA Idet X10 10µA  IBM 130nm Process  Power supply 1.6V  NMOS input transistor : 143 µA (including bias current)  Bias current cascode : 28 µA  SF output : 200 µA  CSA Power Supply 171 µA (274 µW) compared to 253 µW in schematic simulation

H.Mathez– VLSI-FPGA-PCB Lyon– June , Noise in a Non Switched CSA Cd - + Cf Votage Noise Current Noise Rf Rf is a noiseless resistor G0  0 : GBW of amplifier Equation 1 Equation 2

H.Mathez– VLSI-FPGA-PCB Lyon– June , Noise in Switched CSA Cd - + Cf Votage Noise Current Noise  Using the weighting function (F S Goulding NIMA )  Noise is measured just before the reset switch on Voltage noise is independent of switching time Current noise is proportional to the switching time If Strips are AC coupled Voltage noise is dominant whereas in DC coupled both (en and in) contribute to the output noise G0  0 : GBW of amplifier loaded by Cd and Cf Equation 3Equation 4

H.Mathez– VLSI-FPGA-PCB Lyon– June , KTC noise Rf Cd - + Cf Votage Noise Switched closed : at the end of Reset noise is stored in Cf or in Cd+Cf Ideal amplifier (G=∞,  0=∞): no noise stored in Cd and v 2 =kT/Cf is transferred to the output during readout Poor amplifier : noise is stored on both Cf and Cd and v 2 =kT/(Cf+cd) will be amplified during readout

H.Mathez– VLSI-FPGA-PCB Lyon– June , KTC noise Bandwidth amplifier > Bandwidth Ron*Cf (1/RonCf) Bandwidth amplifier < Bandwidth RonCf Ron=100Ω, G0=57dB, f0=1GHz

H.Mathez– VLSI-FPGA-PCB Lyon– June , Noise simulation (AC noise) has been made for 2 different Rf in non switched CSA, i n and e n can be extracted Ouput noise is the sum of equation 1 and equation 2 K1 = 73.8E9 K2 = 2.5E12 (Cf = 0.1pF) i n 2 = 5.85E-28 A 2 /Hz e n 2 = 8.3E-18 V 2 /Hz i n = 24.2 fA/sqrtHz (eq 1.88 nA shot noise) e n = 2.88 nV/sqrtHz ( eq 500  resistor) V out, noise 2 = 760 nV RF1 100 M  V out, noise 2 = 615 nV RF2 1 M  (760 nV 2, Vout=74 mV, Qin=10fC ~ ENC = 730e-) Eq 1 and 2 V out, noise 2 (en) = 612 nV RF1 100 M  V out, noise 2 (in) = 146 nV RF2 100 M  e n is dominant noise source Noise calculation Noise simulation in AC mode and calculation for switched mode

H.Mathez– VLSI-FPGA-PCB Lyon– June , Noise calculation in switched mode using : e n (computed in previous slide) i n (computed in previous slide) equation 3 and 4 V out, noise 2 (e n ) = 610 nV 2 V out, noise 2 (i n ) = 340 pV 2 Total output noise = 610 nV 2 = 780 µV Vout = 74 mV ENC = 658 e- Tr_noise simulation : 200 iterations Fmax = 5GHz Vout 26 ns Compute the standard deviation for all values 26ns Total output noise = 738 µV Vout = 74 mV ENC = 623 e- 2 ways to simulate noise in switched CSA: TR_noise Standard AC noise + calculation Noise calculation Calculation and TR_noise simulation in good agreement TR_noise: No noise summary More CPU time More reliable AC Noise: Increase by 20% of noise Noise summary available Less CPU time

H.Mathez– VLSI-FPGA-PCB Lyon– June , Vout vs cd Input capacitor : Cd : 4.9 pF C(Cd + PCB + test socket) : 9 pF C(QFN package) : 0.5pF Cesd input pad : 2pF Total input capacitor : 12.5pF mV fC Tin = 40ns Gconv = 6.3 mV/fC (In agreement with test 6.2 mV/fC))

H.Mathez– VLSI-FPGA-PCB Lyon– June , ENC vs Cd (AC noise simulation) ENC (5pF, 100 M  ) = 730e- ENC (15pF, 100 M  ) = 1260e- 5pF < Cd < 15 pF 730e- 1260e- 26ns Vout for ENC calculation Vout = 74mV Output Noise = 871µV Vout = 70mV Output Noise = 1.41mV

H.Mathez– VLSI-FPGA-PCB Lyon– June , ENC vs Cd (TR noise simulation) Cd = 5pF Cd = 15 pF Tin = 26 ns, simulation time 50ns, 100 iterations 674e- 1363e- 25 ns for ENC calculation Vout = 55mV Output Noise = 1.2mV Vout = 71mV Output Noise = 766µV

H.Mathez– VLSI-FPGA-PCB Lyon– June , Cd = 5pF Vout = 77 mV Stddev = 1.25 mV ENC = 1014 e- Cd = 12.5pF Vout = 64 mV Stddev = 1.59 mV ENC = 1552 e- ENC vs Cd (TR noise simulation) Tin = 26 ns, simulation time 10µs, 200 pulses Cd = 5pF Cd = 15 pF

H.Mathez– VLSI-FPGA-PCB Lyon– June , ENC vs Cd (TR noise simulation) Cd = 12.5pF Vout = 67 mV Stddev = 1.62 mV ENC = 1511 e- Tin = 40 ns

H.Mathez– VLSI-FPGA-PCB Lyon– June ,  Fclk = 15 MHz  Asic 3 Reset CSA Output CSA RMS Noise = 1.32 mV  1600 e- Tests Results - Noise Qin = 0 Qin = 1.2 fC Output Signal Dispersion 2 histograms lightly 15 MHz S/N = 7.5 (compared to 10 required) MIP : 1.2 fC CSA RMS Noise = 1.32 mV  1600 e- Cd ~ 12.5pF (5 pf in simulation) ENC for 5pf will be 1600/sqrt(2.5) = e-

H.Mathez– VLSI-FPGA-PCB Lyon– June , ENC Fclk = 15 Mhz (Tin = 40 ns) ASIC ASIC ASIC ENC in 15 Mhz ENC (simulated 12.5pF = 1140 e- ENC (simulated TR noise n pulses, Tin = 26ns, sim time 12.5pF = 1080e- ENC (simulated TR noise, Tin = 26ns, sim time 12.5pF = 1552e- ENC (simulated TR noise Tin 12.5pF = 1511 e-

H.Mathez– VLSI-FPGA-PCB Lyon– June , Conclusion CSA works 15 Mhz Step in progess :  increase performance (Speed, S/N, 40 MHz Clocking)  ASIC with few channels (CSA, Comparators) : possible submission fall 2012  Both sensor polarities (holes or electrons)  1.2 v & low temperature