Presentation is loading. Please wait.

Presentation is loading. Please wait.

The Chemistry of Life Macromolecules

Similar presentations


Presentation on theme: "The Chemistry of Life Macromolecules"— Presentation transcript:

1 The Chemistry of Life Macromolecules
Macromolecules or organic compounds make up the body. The backbone of these compounds is carbon; from here carbon-containing compounds. have a core based around carbon the core has attached groups of atoms called functional groups the functional groups confer specific chemical properties on the organic molecules

2 Polymers Are Built of Monomers
There are four types of macromolecules: Carbohydrates Lipids Proteins Nucleic acids Large macromolecules are actually assembled from many similar small components, called monomers the assembled chain of monomers is known as a polymer

3 Carbohydrates Carbohydrates are monomers that make up the structural framework of cells and play a critical role in energy storage a carbohydrate is any molecule that contains the elements C, H, and O in a 1:2:1 ratio Example: Sugar glucose C6H1206 the sizes of carbohydrates varies simple carbohydrates – made up of one or two monomers complex carbohydrates – made up of polymers

4 Carbohydrates Simple carbohydrates are small
monosaccharides consist of only one monomer subunit an example is the sugar glucose (C6H12O6) disaccharides consist of two monosaccharides an example is the sugar sucrose, which is formed by joining together two monosaccharides, glucose and fructose

5 Carbohydrates Complex carbohydrates are long polymer chain
the long chains are called polysaccharides Plants and animals store energy in polysaccharide chains formed from glucose plants form starch animals form glycogen

6 Carbohydrates Some polysaccharides are structural and resistant to digestion by enzymes plants form cellulose cell walls some animals form chitin for exoskeletons

7 Carbohydrates and their function

8 Lipids Lipids – fats and other molecules that are not soluble in water
lipids are non-polar molecules lipids have many different types fats oils steroids rubber waxes pigments

9 Lipids fats have two subunits
fatty acids glycerol fatty acids are chains of C and H atoms, known as hydrocarbons the chain ends in a carboxyl (-COOH) group

10 Because there are 3 fatty acids attached to a glycerol, another name for a fat is triglyceride

11 Saturated and unsaturated fats
Fatty acids have different chemical properties due to the number of hydrogens that are attached to the non-carboxyl carbons if the maximum number of hydrogens are attached, then the fat is said to be saturated Fat is solid at room temperature if there are fewer than the maximum attached, then the fat is said to be unsaturated Oil is liquid at room temperature.

12 Saturated and unsaturated fats

13 Lipids Biological membranes involve lipids
phospholipids make up the two layers of the membrane cholesterol is embedded within the membrane Lipids are a key component of biological membranes

14 Proteins Proteins are complex macromolecules that are polymers of many subunits called amino acids the covalent bond linking two amino acids together is called a peptide bond the assembled polymer is called a polypeptide amino acids, polypeptide

15 The many functions of proteins

16 Proteins Amino acids are small molecules with a simple basic structure, a carbon atom to which three groups are added an amino group (-NH2) a carboxyl group (-COOH) a functional group (R) The functional group gives amino acids their chemical identity there are 20 different types of amino acids

17 Proteins Protein structure is complex
the order of the amino acids that form the polypeptide is important the sequence of the amino acids affects how the protein folds together the way that a polypeptide folds to form the protein determines the protein’s function some proteins are comprised of more than one polypeptide

18 Proteins There are four general levels to protein structure Primary
Secondary Tertiary Quaternary

19 Proteins Primary structure – the sequence of amino acids in the polypeptide chain This determines all other levels of protein structure Levels of protein structure (circle the primary structure)

20 Proteins Secondary structure forms because regions of the polypeptide that are non-polar are forced together The folded structure may resemble coils, helices, or sheets Levels of protein structure (circle the secondary structure)

21 Proteins Tertiary structure – the final 3-D shape of the protein
The final twists and folds that lead to this shape are the result of polarity differences in regions of the polypeptide Levels of protein structure (circle the tertiary structure)

22 Proteins Quaternary structure – the spatial arrangement of proteins comprised of more than one polypeptide chain Levels of protein structure (circle the quaternary structure)

23 Protein The shape of a protein affects its function
changes to the environment of the protein may cause it to unfold or denature increased temperature or lower pH affects hydrogen bonding, which is involved in the folding process a denatured protein is inactive

24 Nucleic Acids Nucleic acids are very long polymers that store information comprised of monomers called nucleotides each nucleotide has 3 parts a five-carbon sugar a phosphate group an organic nitrogen-containing base there are five different types of nucleotides information is encoded in the nucleic acid by different sequences of these nucleotides

25 Nucleic Acids There are two types of nucleic acids
Deoxyribonucleic acid (DNA) Ribonucleic acid (RNA) RNA is similar to DNA except that it uses uracil instead of thymine it is comprised of just one strand it has a ribose sugar

26 Nucleic Acids The structure of DNA is a double helix because
there are only two base pairs possible Adenosine (A) pairs with thymine (T) Cytosine (C) pairs with Guanine (G) the bond holding together a base pair is hydrogen bond a sugar-phosphate backbone comprised of phosphodiester bonds gives support

27 The DNA double helix

28 Nucleic Acids The structure of DNA helps it to function (information storage) the hydrogen bonds of the base pairs can be easily broken to unzip the DNA so that information can be copied each strand of DNA is a mirror image so the DNA contains two copies of the information having two copies means that the information can be accurately copied and passed to the next generation


Download ppt "The Chemistry of Life Macromolecules"

Similar presentations


Ads by Google