The Mechanical Structure for the SVD Upgrade

Slides:



Advertisements
Similar presentations
SVD Serial Numbers M.Friedl (HEPHY Vienna) 6 May 2014.
Advertisements

24 June 2010 Immanuel Gfall (HEPHY Vienna) CO 2 Cooling for PXD/SVD IDM Meeting.
A Low Mass On-chip Readout Scheme for Double-sided Silicon Strip Detectors 13th February 2013 C. Irmler, T. Bergauer, A. Frankenberger, M. Friedl, I. Gfall,
Milestones and Schedule of SVD Construction Markus Friedl (HEPHY Vienna) on behalf of the Belle II SVD Collaboration BPAC October 2012.
N-XYTER Hybrid Developments Christian J. Schmidt et al., GSI Darmstadt JINR, Dubna, Oct. 15 th 2008.
The Origami Chip-on-Sensor Concept for Low-Mass Readout of Double-Sided Silicon Detectors M.Friedl, C.Irmler, M.Pernicka HEPHY Vienna.
Construction and Status of the Origami Module Prototype C. Irmler HEPHY Vienna.
The AMS-02 detector is based on a large acceptance (~0.5 m²sr) and high sensitivity spectrometer composed by a super-conducting magnet (0.8 T), cooled.
The LHCb Inner Tracker LHCb: is a single-arm forward spectrometer dedicated to B-physics acceptance: (250)mrad: The Outer Tracker: covers the large.
Construction and Performance of a Double-Sided Silicon Detector Module using the Origami Concept C. Irmler, M. Friedl, M. Pernicka HEPHY Vienna.
Performance of the DZero Layer 0 Detector Marvin Johnson For the DZero Silicon Group.
Carbon-Epoxy Composite Base Plates for the PHOBOS Spectrometer Arms J.Michalowski, M.Stodulski The H.Niewodniczanski Institute of Nuclear Physics, Krakow.
M.Friedl, C.Irmler, M.Pernicka HEPHY Vienna
19 November 2009 Christian Irmler (HEPHY Vienna) APV25 and Origami Scheme 4 th Open Meeting of the Belle II Collaboration.
SVX4 chip 4 SVX4 chips hybrid 4 chips hybridSilicon sensors Front side Back side Hybrid data with calibration charge injection for some channels IEEE Nuclear.
18 November 2010 Immanuel Gfall (HEPHY Vienna) SVD IR Mechanics 7 th B2GM.
27 January 2010 Immanuel Gfall (HEPHY Vienna) Belle II SVD Mechanics and Cooling DEPFET Meeting Prag.
SVD Mechanics 21th B2GM Florian Buchsteiner (HEPHY Vienna)
18 November 2010 Immanuel Gfall (HEPHY Vienna) SVD Mechanics IDM.
26 April 2013 Immanuel Gfall (HEPHY Vienna) Belle II SVD Overview.
1 VI Single-wall Beam Pipe tests M.OlceseJ.Thadome (with the help of beam pipe group and Michel Bosteels’ cooling group) TMB July 18th 2002.
7 th B2GM SVD Summary 19 November 2010 Markus Friedl (HEPHY Vienna)
APV25 for SuperBelle SVD M.Friedl HEPHY Vienna. 2Markus Friedl (HEPHY Vienna)11 Dec 2008 APV25 Developed for CMS by IC London and RAL (70k chips installed)
Origami Chip-on-Sensor Design: Progress and New Developments 19th September 2012 TWEPP 2012, C. Irmler (HEPHY Vienna) TWEPP 2012, Oxford University.
Collision Analysis SVD Meeting Markus Friedl (HEPHY Vienna) 18 June 2015.
Status of SVD Readout Electronics Markus Friedl (HEPHY Vienna) on behalf of the Belle II SVD Collaboration BPAC October 2012.
PXL Cable Options LG 1HFT Hardware Meeting 02/11/2010.
Construction and Test of the First Belle II SVD Ladder Implementing the Origami Chip-on-Sensor Design 29 Sept TWEPP 2015, C. Irmler (HEPHY Vienna)
The Belle II Silicon Vertex Detector Florian Buchsteiner (HEPHY Vienna)
Kodali Kameswara Rao TIFR, Mumbai
At the HERA collider in Hamburg an experiment (ZEUS) has been built to study electron-proton collisions. For the near future an upgrade of this experiment.
PHENIX Silicon Vertex Tracker. Mechanical Requirements Stability requirement, short and long25 µm Low radiation length
Tevatron II: the world’s highest energy collider What’s new?  Data will be collected from 5 to 15 fb -1 at  s=1.96 TeV  Instantaneous luminosity will.
SVD Mechanics Markus Friedl (HEPHY Vienna) BPAC, 26 October 2015.
1 VI Single-wall Beam Pipe Option: status and plans M.Olcese TMB June 6th 2002.
11 June 2015 Thomas Bergauer (HEPHY Vienna) Belle II SVD beam Test SPS 2015 SPS users meeting.
Construction and Status of the Origami Module Prototype C. Irmler, M. Friedl HEPHY Vienna.
12/3/2015R. Mountain, Syracuse University LHCb CO2 Cooling EDR2.
Thermal Model of Pixel Blade Conceptual Design C. M. Lei 11/20/08.
ILD Vertex Detector Y. Sugimoto 2012/5/24 ILD
Walter Sondheim 6/9/20081 DOE – Review of VTX upgrade detector for PHENIX Mechanics: Walter Sondheim - LANL.
Vessel dimensions GTK assembly carrier Electrical connections Cooling pipes integration Vessel alignment with the beam Next steps Conclusion 3/23/20102electro-mechanical.
ATLAS ITk Upgrade: SLIM Update
10 September 2010 Immanuel Gfall (HEPHY Vienna) Belle II SVD Upgrade, Mechanics and Cooling OEPG/FAKT Meeting 2010.
Origami and PA design 6 February 2012 Christian Irmler (HEPHY Vienna) 1 Common SVD-PXD Meeting.
Comments on ladder structure 5 Feb Toru Tsuboyama.
SVD Ribs and SLM M.Friedl, F.Buchsteiner, R.Thalmeier (HEPHY Vienna) 27 May 2014.
Origami and Cooling 24th September 2012 C. Irmler (HEPHY Vienna) Joint PXD and SVD Meeting Göttingen.
SVD Cables & Pipes Markus Friedl (HEPHY Vienna) B2GM, 24 July 2012.
25th April 2013 C. Irmler (HEPHY), Y. Onuki (IPMU) Ladder Assembly Procedure Belle II – New Collaborators Meeting.
SVD Status Markus Friedl (HEPHY Vienna) SVD-PXD Göttingen, 25 September 2012.
Electrical Tests of Modules and Ladders Markus Friedl (HEPHY Vienna) 2 October 2014.
13 Januar 2011 Immanuel Gfall (HEPHY Vienna) Annekathrin Frankenberger (HEPHY Vienna) SVD Cooling Cooling Meeting Karlsuhe.
24 September 2012 Immanuel Gfall (HEPHY Vienna) SVD Status of Mechanics PXD-SVD Meeting Göttingen.
24 September 2012 Immanuel Gfall (HEPHY Vienna) Annekathrin Frankenberger (HEPHY Vienna) SVD Status of Mechanics PXD-SVD Meeting Göttingen.
Schedule 24 September 2012 Christian Irmler (HEPHY Vienna) Joint PXD and SVD Meeting Göttingen.
Atlas SemiConductor Tracker final integration and commissioning Andrée Robichaud-Véronneau Université de Genève on behalf of the Atlas SCT collaboration.
Straw man layout for ATLAS ID for SLHC
October 2014Silicon Pixel Tracker – Chris Damerell 1 Tracking sensor, one of 12,000, 8x8 cm 2, 2.56 Mpixels each Matching endcaps (only one layer shown)
Florian Buchsteiner (HEPHY Vienna)
SVD Electronics Constraints
Markus Friedl (HEPHY Vienna)
7th Belle II VXD Workshop, Prague
Christoph Schwanda (HEPHY Vienna) For the Belle II SVD group
IBL Overview Darren Leung ~ 8/15/2013 ~ UW B305.
Cooling pipes and Space for Services
ob-fpc: Flexible printed circuits for the alice tracker
SIT AND FTD DESIGN FOR ILD
Comments to the SVD4 structure
C. Irmler, M. Friedl, M. Pernicka HEPHY Vienna
Presentation transcript:

The Mechanical Structure for the SVD Upgrade Immanuel Gfall (HEPHY Vienna) 19.11.2009

Immanuel Gfall (HEPHY Vienna) Design Goals Lowest possible material budget Gravitational sag equal or lower than 100µm Minimum coefficient of thermal expansion Low moisture susceptibility Radiation hardness up to 10 Mrad Compliant with the Origami concept 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Origami Module Readout Side High component density Sensitive wirebonds Flexible structure Thermal expansion Bad attributes for mounting the structure on top side 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Immanuel Gfall (HEPHY Vienna) Origami Rohacell Core Rohacell core is an already existing volume Electrical and thermal separation from sensor Evenly distributed material Small modifications of the core can lead to good structural strength 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Origami Module Sensor Side Rigid contact surface Conventional rib design is possible Wire bonds and fanouts limit the contact area 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Immanuel Gfall (HEPHY Vienna) Two Design Options Option 1: Sandwich Option 2: Ribs 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Option 1- Sandwich Design Carbon Fiber Reinforced Plastic (CFRP) layers cover Rohacell core Separating Sensor from CFRP using a thin isolating film (eg. Sil-Pad strips) Origami hybrid sits on top of Sandwich (not drawn in this sketch) CFRP Sandwich Sensor 19.11.2009 Immanuel Gfall (HEPHY Vienna) 7

Option 1 – Simulation Boundary Conditions Rohacell: 2 mm thickness CFRP: 2 x 0.14 mm plies 40 mm wide, 2.28 mm thick, 698 mm long Sensor weight: 23.90 g Structure weight: 15 g Fixed support at both ends Average radiation length: 0.629% X0 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Immanuel Gfall (HEPHY Vienna) Option 1 - Simulation Max. sag: 0.084 mm Avg. sag: 0.05 mm 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Immanuel Gfall (HEPHY Vienna) Option 2 – Rib Design Sandwich composite ribs CFRP ribs support horizontally arranged sensors Sandwich rib structure supports vertically arranged sensors 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Option 2 – Mounting Points Elevated Rohacell mounting points Serve as contact area and isolation for the sensors 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Option 2 – Simulation Boundary Conditions Rohacell: 1.2 mm thickness CFRP: 2 x 0.14 mm plies per rib 6.5 mm high, 1.48 mm wide, 698 mm long Structure weight: 4.8 g (both ribs) Fixed support at both ends Average radiation length: 0.579 % X0 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Immanuel Gfall (HEPHY Vienna) Option 2 – Simulation Horizontal Sensors Max sag: 0.084 mm Avg sag: 0.05 mm 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Immanuel Gfall (HEPHY Vienna) Option 2 – Simulation Vertical Sensors Max sag: 0.087 mm Avg sag: 0.067 mm 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Radiation Length Option 1 “Batman” distribution of pipe and coolant Pipe Coolant APV Kapton Sensor CFRP Rohacell 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Radiation Length Option 2 APV Kapton Pipe Coolant Sensor CFRP Rohacell 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Pros & Cons of Option 1 (Sandwich Design) + Even distribution of material budget – High fabrication effort & cost – Connector issues with bent kapton – Additional capacitance decreases signal to noise by ~ 2.5% – Bonding potentially more complicated 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Pros & Cons of Option 2 (Rib Design) + Significantly easier to build + High assembly precision + Gravitational sag constant in φ – Particles could hit the structure before they hit the sensor (although unlikely) – Uneven material distribution 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Immanuel Gfall (HEPHY Vienna) Discussion Homogeneous design vs. lower average radiation length Construction effort of sandwich vs. rib design Higher costs of sandwich design Problem of twist resulting from slanted sensors 19.11.2009 Immanuel Gfall (HEPHY Vienna)

Immanuel Gfall (HEPHY Vienna) Outlook Construction of mechanical mockup Thermal simulation / measurements Integration of cooling Construction of outermost ladder Endring design 19.11.2009 Immanuel Gfall (HEPHY Vienna)