1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS.

Slides:



Advertisements
Similar presentations
by Alexander Glavtchev
Advertisements

6.1 Transistor Operation 6.2 The Junction FET
Contact Modeling and Analysis of InAs HEMT Seung Hyun Park, Mehdi Salmani-Jelodar, Hong-Hyun Park, Sebastian Steiger, Michael Povoltsky, Tillmann Kubis,
IEEE Device Research Conference, June , Notre Dame
Simulations of sub-100nm strained Si MOSFETs with high- gate stacks
Lateral Asymmetric Channel (LAC) Transistors
Optimization of Carbon Nanotube Field-Effect Transistors (FETs) Alexandra Ford NSE 203/EE 235 Class Presentation March 5, 2007.
Full-band Simulations of Band-to-Band Tunneling Diodes Woo-Suhl Cho, Mathieu Luisier and Gerhard Klimeck Purdue University Investigate the performance.
1 Uttam Singisetti*, Man Hoi Wong, Jim Speck, and Umesh Mishra ECE and Materials Departments University of California, Santa Barbara, CA 2011 Device Research.
1 Scalable E-mode N-polar GaN MISFET devices and process with self-aligned source/drain regrowth Uttam Singisetti*, Man Hoi Wong, Sansaptak Dasgupta, Nidhi,
DRC mS/  m In 0.53 Ga 0.47 As MOSFET with 5 nm channel and self-aligned epitaxial raised source/drain Uttam Singisetti*, Mark A. Wistey, Greg.
1 In 0.53 Ga 0.47 As MOSFETs with 5 nm channel and self-aligned source/drain by MBE regrowth Uttam Singisetti PhD Defense Aug 21, 2009 *
Modern VLSI Design 3e: Chapter 2 Copyright  1998, 2002 Prentice Hall PTR Topics n Derivation of transistor characteristics.
Network for Computational Nanotechnology (NCN) UC Berkeley, Univ.of Illinois, Norfolk State, Northwestern, Purdue, UTEP First Time User Guide to OMEN Nanowire**
Philip Kim Department of Physics Columbia University Toward Carbon Based Electronics Beyond CMOS Devices.
Three-dimensional quantum transport simulation of ultra-small FinFETs H. Takeda and N. Mori Osaka University.
280 GHz f T InP DHBT with 1.2  m 2 base-emitter junction area in MBE Regrown-Emitter Technology Yun Wei*, Dennis W. Scott, Yingda Dong, Arthur C. Gossard,
Advanced Process Integration
Introduction to FinFet
Nanometer InP Electron Devices for VLSI and THz Applications
Limitations of Digital Computation William Trapanese Richard Wong.
Investigation of Performance Limits of Germanium DG-MOSFET Tony Low 1, Y. T. Hou 1, M. F. Li 1,2, Chunxiang Zhu 1, Albert Chin 3, G. Samudra 1, L. Chan.
Grace Xing---EE30357 (Semiconductors II: Devices) 1 EE 30357: Semiconductors II: Devices Lecture Note #19 (02/27/09) MOS Field Effect Transistors Grace.
Prospects for High-Aspect-Ratio FinFETs in Low-Power Logic Mark Rodwell, Doron Elias University of California, Santa Barbara 3rd Berkeley Symposium on.
2010 IEEE Device Research Conference, June 21-23, Notre Dame, Indiana
Comparison of Ultra-Thin InAs and InGaAs Quantum Wells and
University of California Santa Barbara Yingda Dong Molecular Beam Epitaxy of Low Resistance Polycrystalline P-Type GaSb Y. Dong, D. Scott, Y. Wei, A.C.
Numerical Boltzmann/Spherical Harmonic Device CAD Overview and Goals Overview: Further develop and apply the Numerical Boltzmann/Spherical Harmonic method.
Ultimate Device Scaling: Intrinsic Performance Comparisons of Carbon- based, InGaAs, and Si Field-effect Transistors for 5 nm Gate Length Mathieu Luisier.
Overview Obtain calibrated TCAD Sentaurus models as an approximation for Atomistic simulations of UTB Homojunction and Heterojunction TFETs TCAD models.
InAs Inserted HEMT 연성진.
© 2008, Reinaldo Vega UC Berkeley Top-Down Nanowire and Nano- Beam MOSFETs Reinaldo Vega EE235 April 7, 2008.
Lecture 23 OUTLINE The MOSFET (cont’d) Drain-induced effects Source/drain structure CMOS technology Reading: Pierret 19.1,19.2; Hu 6.10, 7.3 Optional Reading:
III-V MOSFETs: Scaling Laws, Scaling Limits,Fabrication Processes A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
12 nm-Gate-Length Ultrathin-Body InGaAs/InAs MOSFETs with 8
Technology Development for InGaAs/InP-channel MOSFETs
Novel Metal-Oxide-Semiconductor Device
Ultrathin InAs-Channel MOSFETs on Si Substrates Cheng-Ying Huang 1, Xinyu Bao 2, Zhiyuan Ye 2, Sanghoon Lee 1, Hanwei Chiang 1, Haoran Li 1, Varistha Chobpattana.
University of California, Santa Barbara
Advance Nano Device Lab. Fundamentals of Modern VLSI Devices 2 nd Edition Yuan Taur and Tak H.Ning 0 Ch4.2 Threshold Voltage.
Improved Regrowth of Self-Aligned Ohmic Contacts for III-V FETs North American Molecular Beam Epitaxy Conference (NAMBE), Mark A. Wistey Now at.
III-V CMOS: Device Design & Process Flows , fax ESSDERC Workshop on Germanium and III-V MOS Technology, Sept.
C. Kadow, J.-U. Bae, M. Dahlstrom, M. Rodwell, A. C. Gossard *University of California, Santa Barbara G. Nagy, J. Bergman, B. Brar, G. Sullivan Rockwell.
III-V MOS: Planar and Fin Technologies 2014 MRS Spring Meeting, April 23, San Francisco. M.J.W. Rodwell, UCSB III-V MOS: S. Lee, C.-Y. Huang, D. Elias,
Process Technologies For Sub-100-nm InP HBTs & InGaAs MOSFETs M. A. Wistey*, U. Singisetti, G. J. Burek, B. J. Thibeault, A. Baraskar, E. Lobisser, V.
2002/06/11 Rational You p.1 Non-Classical CMOS Dr. Rational You IEK/ITRI 2002/07/11 Source:
Uttam Singisetti. , Mark A. Wistey, Greg J. Burek, Ashish K
2 s 2.org 2008 MSD Annual Review Simulation study and tool development for ultra-scaled InAs HEMTs Theme 6 Neerav Kharche, Mathieu Luisier, & Gerhard.
ISCS 2008 InGaAs MOSFET with self-aligned Source/Drain by MBE regrowth Uttam Singisetti*, Mark A. Wistey, Greg J. Burek, Erdem Arkun, Ashish K. Baraskar,
A Self-Aligned Epitaxial Regrowth Process for Sub-100-nm III-V FETs A. D. Carter, G. J. Burek, M. A. Wistey*, B. J. Thibeault, A. Baraskar, U. Singisetti,
Guided by: Prof.J.D.PRADHAN Submitted By: K.Anurag Regn no:
Tunnel FETs Peng Wu Mar 30, 2017.
Making better transistors: beyond yet another new materials system
Contact Resistance Modeling and Analysis of HEMT Devices S. H. Park, H
Lower Limits To Specific Contact Resistivity
Contact Resistance Modeling in HEMT Devices
High Transconductance Surface Channel In0. 53Ga0
OMEN: a Quantum Transport Modeling Tool for Nanoelectronic Devices
Objective: Demonstrate BTBT capability Approach:
Neerav Kharche Advisors: Prof. Gerhard Klimeck Prof. Timothy Boykin
PHYSICS OF SEMICONDUCTOR DEVICES II
Nanowire Gate-All-Around (GAA) FETs
Tunnel field-effect transistor
Optional Reading: Pierret 4; Hu 3
MOS Capacitor Basics Metal SiO2
CNTFET, FinFET and MESFET Md. Rakibul Karim Akanda University of California Riverside, California, USA.
Mechanical Stress Effect on Gate Tunneling Leakage of Ge MOS Capacitor
Record Extrinsic Transconductance (2. 45 mS/μm at VDS = 0
Defining LER and Defect Specifications
Beyond Si MOSFETs Part 1.
Presentation transcript:

1 III-V MOS: Record-Performance Thermally-Limited Devices, Prospects for High-On-Current Steep Subthreshold Swing Devices Mark Rodwell, UCSB IPRM/ISCS Conference, June 30-July, 2015, UCSB III-V MOS C.-Y. Huang, S. Lee*, A.C. Gossard, V. Chobpattanna, S. Stemmer, B. Thibeault, W. Mitchell : UCSB Low-voltage devices P. Long, E. Wilson, S. Mehrotra, M. Povolotskyi, G. Klimeck: Purdue Now with: *IBM, **Intel

2 Why III-V MOS ? III-V vs. Si: Low m*→ higher velocity. Fewer states→ less scattering → higher current. Can then trade for lower voltage or smaller FETs. Problems: Low m*→ less charge. Low m* → more S/D tunneling. Narrow bandgap→ more band-band tunneling, impact ionization.

3 Reducing leakage: Vertical spacer, Ultra-thin channel *Heavy elements look brighterCourtesy of S. Kraemer (UCSB) Lee et al., 2014 VSLI Symposium Vertical Spacer N+ S/D

4 Reducing leakage: Vertical spacer, Ultra-thin channel S. Lee et al., VLSI 2014 [1] Lin IEDM 2013,[2] T.-W. Kim IEDM 2013,[3] Chang IEDM 2013,[4] Kim IEDM 2013 [5] Lee APL 2013 (UCSB), [6] D. H. Kim IEDM 2012,[7] Gu IEDM 2012,[8] Radosavljevic IEDM 2009

5 Off-state comparison: 2.5 nm vs. 5.0 nm-thick InAs channel 5.0 nm InAs 2.5 nm InAs Better SS at all gate lengths  Better electrostatics (aspect ratio) and reduced BTBT (quantized E g ) ~10:1 reduction in minimum off-state leakage ~5:1 increase in gate leakage  increased eigenstate L g =500 nm

6 On-state comparison: 2.5 nm vs. 5.0 nm-thick InAs channel 1D-Possion Schrodinger solver (coded by W. Frensley, UT Dallas)

7 ZrO 2 vs. HfO 2 : Peak g m, SS, split-CV, and mobility 7 (1) ZrO 2 higher capacitance than HfO 2, (2) ZrO 2 results, low SS, are reproducible Comparison: two process runs ZrO 2, one run HfO 2, both 2nm (on 1nm Al 2 O 3 )

8 Double-heterojunction MOS: 60 pA/  m leakage Minimum I off ~ 60 pA/μm at V D =0.5V for L g -30 nm 100:1 smaller I off compared to InGaAs spacer BTBT leakage suppressed  isolation leakage dominates L g -30nm C. Y. Huang et al., IEDM 2014 L g -30nm

9 12 nm L g III-V MOS N+InGaAs InP spacer InAlAs Barrier L g ~12nm ~ 8nm t ch ~ 2.5 nm (1.5/1 nm InGaAs/InAs) t ch ~ 2.5 nm (1.5/1 nm InGaAs/InAs) Top View Ni Cross-setion N+InP

10 I D -V G and I D -V D curves of 12nm L g FETs I off ~1.3 nA/μm I on ~1.1 mA/μm I on /I off > 8.3∙10 5 L g -12nm

11 Mobility extraction at L g -25 µm long channel FETs Mobility~ 250 cm 2 /V∙s Mobility~ 280 cm 2 /V∙s Freq: 200 kHz EOT~ 0.9~1 nm This work InAs channel 1.5/1 nm InGaAs/InAs m*, R S/D more important!

12 Steep FETs

13 Tunnel FETs: truncating the thermal distribution Source bandgap truncates thermal distribution J. Appenzeller et al., IEEE TED, Dec T-FET Normal Must cross bandgap: tunneling Fix (?): broken-gap heterojunction

14 Tunnel FETs: are prospects good ? Useful devices must be small Quantization shifts band edges→ tunnel barrier Band nonparabolicity increases carrier masses Electrostatics: bands bend in source & channel What actual on-current might we expect ?

15 Tunneling Probability For high I on, tunnel barrier must be *very* thin. ~3-4nm minimum barrier thickness: P+ doping, body & dielectric thicknesses

16 T-FET on-currents are low, T-FET logic is slow 3.0% NEMO simulation: GaSb/InAs tunnel finFET: 2nm thick body, 1nm thick  r =12, 12nm L g 10  A/  m Experimental: InGaAs heterojunction HFET; Dewey et al, 2011 IEDM, 2012 VLSI Symp. ~15  A/  Low current → slow logic

17 Resonant-enhanced tunnel FET Avci & Young, (Intel) 2013 IEDM 2nd barrier: bound state dI/dV peaks as state aligns with source improved subthreshold swing. Can we also increase the on-current ?

18 Electron anti-reflection coatings Tunnel barrier: transmission coefficient 0% want: 100% transmission, zero reflection familiar problem Optical coatings reflection from lens surface quarter-wave coating, appropriate n reflections cancel Microwave impedance-matching reflection from load quarter-wave impedance-match no reflection Smith chart.

19 T-FET: single-reflector AR coating Peak transmission approaches 100% Narrow transmission peak; limits on-current Can we do better ?

20 Limits to impedance-matching bandwidth Microwave matching: More sections→ more bandwidth Is there a limit ? Bode-Fano limits R. M. Fano, J. Franklin Inst., Jan Bound bandwidth for high transmission example: bound for RC parallel load→ Do electron waves have similar limits ? Yes ! Schrödinger's equation is isomorphic to E&M plane wave. Khondker, Khan, Anwar, JAP, May 1988 T-FET design→ microwave impedance-matching problem Fano: limits energy range of high transmission Design T-FETs using Smith chart, optimize using filter theory Working on this: for now design by random search *

21 T-FET with 3-layer antireflection coating Interim result; still working on design Simulation

22 Source superlattice: truncates thermal distribution Gnani, 2010 ESSDERC M. Bjoerk et al., U.S. Patent 8,129,763, E. Gnani et al., 2010 ESSDERC Proposed 1D/nanowire device: Gnani, 2010 ESSDERC: simulation

23 Planar (vs. nanowire) superlattice steep FET Long et al., EDL, Dec Planar superlattice FET superlattice by ALE regrowth easier to build than nanowire (?) Performance (simulations): ~100% transmission in miniband. 0.4 mA/  m I on, 0.1  A/  m I off,0.2V Ease of fabrication ? Tolerances in SL growth ? Effect of scattering ? simulation

24 (backup slides follow)