April 3, 2003Agrawal: Fault Collapsing1 Hierarchical Fault Collapsing; Functional Equivalences and Dominances Vishwani D. Agrawal Rutgers University, Dept.

Slides:



Advertisements
Similar presentations
An Algorithm for Diagnostic Fault Simulation Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama USA 13/29/2010IEEE LATW 10.
Advertisements

9-Oct-2002Prasad et al., ITC'021 A New Algorithm for Global Fault Collapsing into Equivalence and Dominance Sets A. V. S. S. Prasad Agere Systems, Bangalore.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 13/12alt1 Lecture 13 Sequential Circuit ATPG Time-Frame Expansion (Lecture 12alt in the Alternative.
1 Lecture 10 Sequential Circuit ATPG Time-Frame Expansion n Problem of sequential circuit ATPG n Time-frame expansion n Nine-valued logic n ATPG implementation.
1 Analyzing Reconvergent Fanouts in Gate Delay Fault Simulation Dept. of ECE, Auburn University Auburn, AL Hillary Grimes & Vishwani D. Agrawal.
Nov. 21, 2006ATS'06 1 Spectral RTL Test Generation for Gate-Level Stuck-at Faults Nitin Yogi and Vishwani D. Agrawal Auburn University, Department of ECE,
Partial Implications, etc.
Copyright 2001, Agrawal & BushnellVLSI Test: Lecture 71 Lecture 7 Fault Simulation n Problem and motivation n Fault simulation algorithms n Serial n Parallel.
3/30/05Agrawal: Implication Graphs1 Implication Graphs and Logic Testing Vishwani D. Agrawal James J. Danaher Professor Dept. of ECE, Auburn University.
Jan. 29, 2002Gaur, et al.: DELTA'021 A New Transitive Closure Algorithm with Application to Redundancy Identification Vivek Gaur Avant! Corp., Fremont,
A Diagnostic Test Generation System Yu Zhang Vishwani D. Agrawal Auburn University, Auburn, Alabama USA Nov. 3rdITC
May 11, 2006High-Level Spectral ATPG1 High-Level Test Generation for Gate-level Fault Coverage Nitin Yogi and Vishwani D. Agrawal Auburn University Department.
Henry Hexmoor1 Chapter 5 Arithmetic Functions Arithmetic functions –Operate on binary vectors –Use the same subfunction in each bit position Can design.
6/11/2015A Fault-Independent etc…1 A Fault-Independent Transitive Closure Algorithm for Redundancy Identification Vishal J. Mehta Kunal K. Dave Vishwani.
Nov 29th 2006MS Thesis Defense1 Minimizing N-Detect Tests for Combinational Circuits Master’s Defense Kalyana R. Kantipudi Thesis Advisor: Dr. Vishwani.
Copyright 2001, Agrawal & BushnellDay-1 PM Lecture 4b1 Design for Testability Theory and Practice Lecture 4b: Fault Simulation n Problem and motivation.
Dec. 19, 2005ATS05: Agrawal and Doshi1 Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849,
Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849, USA Vishwani D. Agrawal Alok S. Doshi.
Aug 11, 2006Yogi/Agrawal: Spectral Functional ATPG1 Spectral Characterization of Functional Vectors for Gate-level Fault Coverage Tests Nitin Yogi and.
Sep. 30, 2003Agrawal: ITC'031 Fault Collapsing Via Functional Dominance Vishwani D. Agrawal Rutgers University, ECE Dept., Piscataway, NJ 08854, USA
4/28/05 Raghuraman: ELEC To Generate a Single Test Vector to detect all/most number of faults in a given set Project by: Arvind Raghuraman Course.
August 29, 2003Agrawal: VDAT'031 It is Sufficient to Test 25% of Faults Vishwani D. Agrawal Rutgers University, ECE Dept., Piscataway, NJ 08854, USA
4/20/2006ELEC7250: Alexander 1 LOGIC SIMULATION AND FAULT DIAGNOSIS BY JINS DAVIS ALEXANDER ELEC 7250 PRESENTATION.
Lecture 5 Fault Simulation
Hierarchical Fault Collapsing for Logic Circuits Thesis Advisor:Vishwani D. Agrawal Committee Members:Victor P. Nelson, Charles E. Stroud Dept. of ECE,
Dec. 29, 2005Texas Instruments (India)1 Concurrent Test Generation Auburn University, Department of Electrical and Computer Engineering Auburn, AL 36849,
1 Oct 24-26, 2006 ITC'06 Fault Coverage Estimation for Non-Random Functional Input Sequences Soumitra Bose Intel Corporation, Design Technology, Folsom,
Spring 08, Mar 27 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2008 Fault Simulation Vishwani D. Agrawal James J.
Spring 07, Mar 8 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2007 Timing Verification and Optimization Vishwani D.
Vishwani D. Agrawal James J. Danaher Professor
1 Fault Nodes in Implication Graph for Equivalence/Dominance Collapsing, and Identifying Untestable and Independent Faults R. Sethuram
Using Hierarchy in Design Automation: The Fault Collapsing Problem Raja K. K. R. Sandireddy Intel Corporation Hillsboro, OR 97124, USA
Independence Fault Collapsing
Using Contrapositive Law to Enhance Implication Graphs of Logic Circuits Kunal K Dave Master’s Thesis Electrical & Computer Engineering Rutgers University.
Exclusive Test and its Application to Fault Diagnosis Vishwani D. Agrawal Dong Hyun Baik Yong C. Kim Kewal K. Saluja Kewal K. Saluja.
Partial Scan Design with Guaranteed Combinational ATPG Vishwani D. Agrawal Agere Systems, Circuits and Systems Research Lab Murray Hill, NJ 07974, USA.
Using Hierarchy in Design Automation: The Fault Collapsing Problem Raja K. K. R. Sandireddy Intel Corporation Hillsboro, OR 97124, USA
May 13, 2005Sandireddy & Agrawal: Hierarchy in Fault Collapsing 1 Use of Hierarchy in Fault Collapsing Raja K. K. R. Sandireddy Intel Corporation Hillsboro,
Jan. 6, 2006VLSI Design '061 On the Size and Generation of Minimal N-Detection Tests Kalyana R. Kantipudi Vishwani D. Agrawal Department of Electrical.
Independence Fault Collapsing and Concurrent Test Generation Thesis Advisor: Vishwani D. Agrawal Committee Members: Victor P. Nelson, Charles E. Stroud.
Oct. 5, 2001Agrawal, Kim and Saluja1 Partial Scan Design With Guaranteed Combinational ATPG Vishwani D. Agrawal Agere Systems Processor Architectures and.
Dominance Fault Collapsing of Combinational Circuits By Kalpesh Shetye & Kapil Gore ELEC 7250, Spring 2004.
Jan. 11, '02Kim, et al., VLSI Design'021 Mutiple Faults: Modeling, Simulation and Test Yong C. Kim University of Wisconsin, Dept. of ECE, Madison, WI 53706,
Spring 2002EECS150 - Lec10-cl1 Page 1 EECS150 - Digital Design Lecture 10 - Combinational Logic Circuits Part 1 Feburary 26, 2002 John Wawrzynek.
Using Contrapositive Law in an Implication Graph to Identify Logic Redundancies Kunal K. Dave ATI Research INC. Vishwani D. Agrawal Dept. of ECE, Auburn.
Diagnostic and Detection Fault Collapsing for Multiple Output Circuits Raja K. K. R. Sandireddy and Vishwani D. Agrawal Dept. Of Electrical and Computer.
ELEN 468 Lecture 231 ELEN 468 Advanced Logic Design Lecture 23 Testing.
Spring 08, Feb 6 ELEC 7770: Advanced VLSI Design (Agrawal) 1 ELEC 7770 Advanced VLSI Design Spring 2008 Timing Verification and Optimization Vishwani D.
Chap. 2 Hierarchical Modeling Concepts. 2 Hierarchical Modeling Concepts Design Methodologies 4-bit Ripple Carry Counter Modules Instances Components.
March 8, 2006Spectral RTL ATPG1 High-Level Spectral ATPG for Gate-level Circuits Nitin Yogi and Vishwani D. Agrawal Auburn University Department of ECE.
Introduction to VLSI Design – Lec01. Chapter 1 Introduction to VLSI Design Lecture # 2 A Circuit Design Example.
THE TESTING APPROACH FOR FPGA LOGIC CELLS E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas Kaunas University of Technology LITHUANIA EWDTW'04.
Important Components, Blocks and Methodologies. To remember 1.EXORS 2.Counters and Generalized Counters 3.State Machines (Moore, Mealy, Rabin-Scott) 4.Controllers.
Spring C:160/55:132 Page 1 Lecture 19 - Computer Arithmetic March 30, 2004 Sukumar Ghosh.
Dominance Fault Collapsing 1 VLSI TESTING PROJECT Dominance Fault Collapsing Anandshankar Mudlapur Arun Balaji Kannan Muthu Balaji Ramkumar Muthu Balan.
CAS 721 Course Project Minimum Weighted Clique Cover of Test Set By Wei He ( )
Copyright 2001, Agrawal & BushnellLecture 6: Sequential ATPG1 VLSI Testing Lecture 6: Sequential ATPG n Problem of sequential circuit ATPG n Time-frame.
High-Level Test Generation. Test Generation by Enhancing Validation Test Sets* * L. Lingappan, et al., VLSI Design, 2007 (Paper available on the class.
CPEN Digital System Design
Copyright 2001, Agrawal & BushnellLecture 6:Fault Simulation1 VLSI Testing Lecture 6: Fault Simulation Dr. Vishwani D. Agrawal James J. Danaher Professor.
Fault Models, Fault Simulation and Test Generation Vishwani D. Agrawal Department of ECE, Auburn University Auburn, AL 36849, USA
Lecture 10 Sequential Circuit ATPG Time-Frame Expansion
VLSI Testing Lecture 8: Sequential ATPG
Fault Collapsing via Functional Dominance
ELEC Digital Logic Circuits Fall 2015 Logic Testing (Chapter 12)
Theorems on Redundancy Identification
Homozygous & Heterozygous Notes
Find the value of g. Find the value of h. 105° h g 75°
A Random Access Scan Architecture to Reduce Hardware Overhead
Presentation transcript:

April 3, 2003Agrawal: Fault Collapsing1 Hierarchical Fault Collapsing; Functional Equivalences and Dominances Vishwani D. Agrawal Rutgers University, Dept. of ECE

April 3, 2003Agrawal: Fault Collapsing2 Test Vector Generation Flow DUT Generate fault list Collapse fault list Generate test vectors Fault Model Required fault coverage

April 3, 2003Agrawal: Fault Collapsing3 Background Single stuck-at fault model is the most popularly used model. Two faults f1 and f2 are equivalent if the same tests detect f1 and f2 (f1=f2) If all tests of fault f1 also detect fault f2, then f2 is said to dominate f1 (f1  f2). a 0 a 1 b 0 b 1 c 0 c 1 a 1  c 1 : Dominance b 1  c 1 : Dominance a 0 = b 0 = c 0 : Equivalence

April 3, 2003Agrawal: Fault Collapsing4 Background Both equivalence and dominance relations are transitive in nature. [ (f1  f2) and (f2  f3) => (f1  f3) ] If f1 dominates f2 and f2 dominates f1 then f1 and f2 are equivalent. [ (f1  f2) and (f2  f1) => (f1 = f2) ] Number of faults in a 2-input AND gate reduces from 6 to 4 (by equivalence) and to 3 (by dominance) collapsing. Example: c6288, #faults =12576 #equ. = 7744 (0.62), #dom. = 5824 (0.46)

April 3, 2003Agrawal: Fault Collapsing5 Problem Statement To devise a new method for fault collapsing with following attributes: –A single procedure for equivalence and dominance –Global analysis (independence from direction, and other choices, in collapsing) –Use functional equivalences and dominances –Hierarchical fault collapsing (collapsing in large circuits using pre-collapsed sub networks)

April 3, 2003Agrawal: Fault Collapsing6 A fault in the circuit is represented by a node in the graph. A directed edge from f2 to f1 indicates that f1 dominates f2 (f2  f1). Edges can represent either structural or functional relations. A New Dominance Graph Model

April 3, 2003Agrawal: Fault Collapsing7 Computational Model Graph is represented as a connectivity matrix Each fault is assumed to be equivalent to itself Treats functional and structural relations identically (f1  f2) and (f2  f1) => f2 = f1. Appear as symmetrical components in the matrix (e.g., a 0,b 0,c 0 ) #faults = 6 (dimension of dominance matrix) 2-input AND gate

April 3, 2003Agrawal: Fault Collapsing8 Transitive Closure Transitive closure (TC) of the dominance matrix gives all dominance relations between faults. TC is computed by the O(n 3 ) Floyd- Warshall algorithm, where n is the dimension of the dominance matrix.

April 3, 2003Agrawal: Fault Collapsing9 Transitive Closure (F1  F2) and (F2  F3) => (F1  F3) F1F1 F2F2 F3F3 F1F2F3 F1 11 F2 11 F3 1 Graph F1F1 F2F2 F3F3 F1F2F3 F1 111 F2 11 F3 1 Transitive Closure

April 3, 2003Agrawal: Fault Collapsing10 Example A B C D E A0A0 B0B0 D0D0 E0E0 C0C0 A1A1 B1B1 D1D1 E1E1 C1C1 Dominance Graph Transitive closure edges

April 3, 2003Agrawal: Fault Collapsing11 Finding Functional Equivalences f0f0 f2f2 Always 0 f1f1 f2f2 f1f1

April 3, 2003Agrawal: Fault Collapsing12 XOR Circuit Functional Equivalences : (c 1,f 1 ), (g 1,h 1,i 1 ), (g 0,m 0 ) c1c1 f1f1 g1g1 h1h1 i1i1 g0g0 m0m0 Also (d 1,f 0 ) and (e 1,c 0 ) not used here

April 3, 2003Agrawal: Fault Collapsing13 Dominance matrix (XOR) (24x24) Functional equivalences shown as boxed entries

April 3, 2003Agrawal: Fault Collapsing14 Transitive Closure (XOR) j 0 k 0 m 1 f 1 f 0 …c 1 a 0

April 3, 2003Agrawal: Fault Collapsing15 Results for XOR Circuit #faults#Eq. Faults#Dom. faults With functional equivalence #Dom. faults#Eq. Faults#faults

April 3, 2003Agrawal: Fault Collapsing16 Design Hierarchy Large designs are modular and hierarchical. Advantageous to store the fault information of repeated blocks in a library. When configured as a library cell the fault list includes cell PI & PO faults for transitivity. Top module B1 B0 C0 C1 C0 C1

April 3, 2003Agrawal: Fault Collapsing17 XOR Library Cell Useful for hierarchical fault collapsing Dimension of the matrix = 14

April 3, 2003Agrawal: Fault Collapsing18 8-bit Ripple Carry Adder (RCA)

April 3, 2003Agrawal: Fault Collapsing19 Fault Collapsing in 8-bit RCA Using Functional Equivalences Number of collapsed faults Flat structural only Hierarchical with functional Equ.Dom.Equ.Dom. xor cell2416(0.63)13(0.54)12(0.50)10(0.42) Full-adder6038(0.63)30(0.50) 24(0.40) 8-bit adder466290(0.62)226(0.49) 178(0.38) Circuit name All faults

April 3, 2003Agrawal: Fault Collapsing20 ISCAS’85 Circuits Circuit name Total faults Equivalence fault set sizeDominance fault set size Graph methodOther programs*Graph methodFastest C C C432exp C C499exp C C C C C C C * Fastest, Gentest, Hitec, TetraMax

April 3, 2003Agrawal: Fault Collapsing21 Finding Dominances f1f1 f0f0 f2f2 Always 0

April 3, 2003Agrawal: Fault Collapsing22 Fault Collapsing in 8-bit RCA Using Functional Dominances Number of collapsed faults Flat structural only Hierarchical with functional Equ.Dom.Equ.Dom. xor cell2416(0.63)13(0.54)10(0.41)4(0.17) Full-adder6038(0.63)30(0.50)26(0.43)14(0.23) 8-bit adder466290(0.62)226(0.49)194(0.42)112(0.24) Circuit name All faults

April 3, 2003Agrawal: Fault Collapsing23 Conclusion A new algorithm for global fault collapsing With functional equivalence number of faults for ATPG reduces considerably Further reduction with functional dominances (Caution: fault coverage not correct when redundant faults are present) Library based hierarchical fault collapsing is a new concept Further studies are being carried out on independent fault sets Reference: Prasad et al., ITC-02, pp