AP Biology Warmup 11/12 Differentiate a codon and an anitcodon. Which do you use to read the following chart?

Slides:



Advertisements
Similar presentations
From Gene to Protein How Genes Work
Advertisements

From Gene to Protein How Genes Work
From Gene to Protein Chapter 17 - Campbell.
DNA gets all the glory, but proteins do all the work!
Nucleic Acids Examples: Structure: RNA (ribonucleic acid)
Protein Synthesis Notes
From Gene to Protein.
Chapter 14. From Gene to Protein Biology 114.
Chapter 6 Expression of Biological Information (Part IV)
Ch. 17:From Gene to Protein
FROM DNA TO PROTEIN Transcription – Translation We will use:
Chapter 17~ From Gene to Protein Protein Synthesis: overview One gene-one enzyme hypothesis (Beadle and Tatum) One gene-one polypeptide (protein) hypothesis.
From Gene to Protein Chapter 17 - Campbell What do genes code for? proteins All the traits of the body How does DNA code for cells & bodies?  how are.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
Ch. 17 Lecture Flow of genetic information in a cell How do we move information from DNA to proteins? transcription translation replication protein RNA.
AP Biology From Gene to Protein How Genes Work.
MCC BP Based on work by K. Foglia Chapter 17. From Gene to Protein.
FROM DNA TO PROTEIN Transcription – Translation. I. Overview Although DNA and the genes on it are responsible for inheritance, the day to day operations.
AP Biology Lecture #33 Translation.
Transcription Translation
From Gene to Protein How Genes Work
Chapter 17. The Central Dogma Transcription & Translation Three main steps for each: Initiation Elongation Termination.
AP Biology From Gene to Protein How Genes Work.
AP Details for Protein Synthesis 2014 From gene to protein.
AP Biology Chapter 17. From Gene to Protein.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
Translation from nucleic acid language to amino acid language Draw 7 boxes on your paper.
AP Biology From Gene to Protein How Genes Work AP Biology What do genes code for? proteinscellsbodies How does DNA code for cells & bodies?  how are.
From Gene to Protein How Genes Work
Protein Synthesis.
Regents Biology From gene to protein: transcription translation protein.
From Gene to Protein How Genes Work
AP Biology From Gene to Protein How Genes Work AP Biology What do genes code for? proteinscellsbodies How does DNA code for cells & bodies?  how are.
Central Dogma – part 2 DNA RNA PROTEIN Translation Central Dogma
Today… Turn in Bozeman homework Complete DNA modeling activity Lecture notes on Transcription & Translation POGIL Homework assigned: read article from.
AP Biology From Gene to Protein How Genes Work.
AP Biology From Gene to Protein How Genes Work.
From Gene to Protein proteinscellsbodies How does DNA code for cells & bodies? DNA.
D.N.A 1. The information carried by a DNA molecule is in
AP Biology Chapter 17. From Gene to Protein.
From Gene to Protein How Genes Work.
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
from nucleic acid language to amino acid language
Chapter 17: From Gene to Protein
From Gene to Protein How Genes Work (Ch. 17).
From gene to protein DNA mRNA protein trait nucleus cytoplasm
Reading the instructions and building a protein!
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work.
Translation Unit 5B.4.
From Gene to Protein How Genes Work
Ch 17 - From Gene to Protein
From Gene to Protein How Genes Work
From Gene to Protein How Genes Work
From Gene to Protein Chapter 17.
From Gene to Protein Chapter 17 - Campbell.
from nucleic acid language to amino acid language
From Gene to Protein How Genes Work
Reading the instructions and building a protein!
Transcription Credit for the original presentation is given to Mrs. Boyd, Westlake High School.
From Gene to Protein How Genes Work
From Gene to Protein Chapter 17 - Campbell.
Protein Synthesis Making Proteins
from nucleic acid language to amino acid language to PROTEIN language
From Gene to Protein Chapter 17 - Campbell.
Presentation transcript:

AP Biology Warmup 11/12 Differentiate a codon and an anitcodon. Which do you use to read the following chart?

AP Biology 6/1/2016 From Gene to Protein How Genes Work

AP Biology 6/1/2016 Translation from nucleic acid language to amino acid language

AP Biology How does mRNA code for proteins? TACGCACATTTACGTACGCGG DNA AUGCGUGUAAAUGCAUGCGCC mRNA Met Arg Val Asn Ala Cys Ala protein ? How can you code for 20 amino acids with only 4 nucleotide bases (A,U,G,C)? ATCG AUCG

AP Biology AUGCGUGUAAAUGCAUGCGCC mRNA mRNA codes for proteins in triplets TACGCACATTTACGTACGCGG DNA AUGCGUGUAAAUGCAUGCGCC mRNA Met Arg Val Asn Ala Cys Ala protein ? codon

AP Biology The code Code for ALL life!  strongest support for a common origin for all life Code is redundant  several codons for each amino acid  3rd base “wobble” Start codon  AUG  methionine Stop codons  UGA, UAA, UAG

AP Biology mRNA From gene to protein DNA transcription nucleuscytoplasm a a a a a a a a a aa ribosome trait protein translation

AP Biology Transfer RNA structure “Clover leaf” structure  anticodon on “clover leaf” end  amino acid attached on 3 end

AP Biology Loading tRNA Aminoacyl tRNA synthetase  enzyme which bonds amino acid to tRNA  bond requires energy ATP  AMP bond is unstable so it can release amino acid at ribosome easily activating enzyme anticodon tRNA Trp binds to UGG condon of mRNA Trp mRNA ACC UGG C=O OH H2OH2O O tRNA Trp tryptophan attached to tRNA Trp C=O O

AP Biology Ribosomes Facilitate coupling of tRNA anticodon to mRNA codon  organelle or enzyme? Structure  ribosomal RNA (rRNA) & proteins  2 subunits large small EP A

AP Biology Ribosomes Met 5' 3' U U A C A G APE A site (aminoacyl-tRNA site)  holds tRNA carrying next amino acid to be added to chain P site (peptidyl-tRNA site)  holds tRNA carrying growing polypeptide chain E site (exit site)  empty tRNA leaves ribosome from exit site

AP Biology Building a polypeptide Initiation  brings together mRNA, ribosome subunits, initiator tRNA Elongation  adding amino acids based on codon sequence Termination  end codon 123 Leu tRNA Met PEA mRNA 5' 3' U U A A A A C C C AU U G G G U U A A A A C C C A U U G G G U U A A A A C C C A U U G G G U U A A A C C A U U G G G A C Val Ser Ala Trp release factor A AA CC UUGG 3'

AP Biology Protein targeting Signal peptide  address label Destinations: secretion nucleus mitochondria chloroplasts cell membrane cytoplasm etc… start of a secretory pathway

AP Biology Can you tell the story? DNA pre-mRNA ribosome tRNA amino acids polypeptide mature mRNA 5' GTP cap poly-A tail large ribosomal subunit small ribosomal subunit aminoacyl tRNA synthetase EPA 5' 3' RNA polymerase exon intron tRNA

AP Biology 6/1/2016 Protein Synthesis in Prokaryotes Bacterial chromosome mRNA Cell wall Cell membrane Transcription Psssst… no nucleus!

AP Biology Prokaryote vs. Eukaryote genes Prokaryotes  DNA in cytoplasm  circular chromosome  naked DNA  no introns Eukaryotes  DNA in nucleus  linear chromosomes  DNA wound on histone proteins  introns vs. exons eukaryotic DNA exon = coding (expressed) sequence intron = noncoding (inbetween) sequence introns come out!

AP Biology Translation: prokaryotes vs. eukaryotes Differences between prokaryotes & eukaryotes  time & physical separation between processes takes eukaryote ~1 hour from DNA to protein  no RNA processing

AP Biology Translation