Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary &

Slides:



Advertisements
Similar presentations
Radiation damage in silicon sensors
Advertisements

Kailua-Kona, Marcel Trimpl, Bonn University Readout Concept for Future Pixel Detectors based on Current Mode Signal Processing Marcel Trimpl.
1 Research & Development on SOI Pixel Detector H. Niemiec, T. Klatka, M. Koziel, W. Kucewicz, S. Kuta, W. Machowski, M. Sapor, M. Szelezniak AGH – University.
M. Szelezniak1PXL Sensor and RDO review – 06/23/2010 STAR PXL Sensors Overview.
Development of an Active Pixel Sensor Vertex Detector H. Matis, F. Bieser, G. Rai, F. Retiere, S. Wurzel, H. Wieman, E. Yamamato, LBNL S. Kleinfelder,
Jaap Velthuis, University of Bristol SPiDeR SPiDeR (Silicon Pixel Detector Research) at EUDET Telescope Sensor overview with lab results –TPAC –FORTIS.
R. H. Richter et al - VERTEX 2002 Kailua-Kona, DEPFET sensors for a LC vertex detector (1) »DEP(leted)F(ield)E(ffect)T(ransistor) operation.
The Origami Chip-on-Sensor Concept for Low-Mass Readout of Double-Sided Silicon Detectors M.Friedl, C.Irmler, M.Pernicka HEPHY Vienna.
Victoria04 R. Frey1 Silicon/Tungsten ECal Status and Progress Ray Frey University of Oregon Victoria ALCPG Workshop July 29, 2004 Overview Current R&D.
The DEPFET Active Pixel Sensor as Vertex Detector for the ILC
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Presentation at the PRC review, , DESY Status of DEPFET pixel detectors for ILC Peter Fischer for the DEPFET collaboration Bonn University:R.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
Tobias Haas DESY 7 November 2006 A Pixel Telescope for Detector R&D for an ILC Introduction: EUDET Introduction: EUDET Pixel Telescope Pixel Telescope.
Hamburg, Marcel Trimpl, Bonn University A DEPFET pixel-based Vertexdetector for TESLA 55. PRC -MeetingHamburg, Mai 2003 M. Trimpl University.
DEPFET Electronics Ivan Peric, Mannheim University.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
ECFA ILC Workshop, November 2005, ViennaLadislav Andricek, MPI für Physik, HLL DEPFET Project Status - in Summary Technology development thinning technology.
07 October 2004 Hayet KEBBATI -1- Data Flow Reduction and Signal Sparsification in MAPS Hayet KEBBATI (GSI/IReS)
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
ILC VXD Review, Fermilab, October 2007 Ariane Frey, MPI für Physik DEPFET Vertex Detector Simulation and Physics Performance Ariane Frey for the DEPFET.
Carlos Mariñas, IFIC, CSIC-UVEG DEPFET Technology for future colliders Carlos Mariñas IFIC-Valencia (Spain) 1 LCPS09, Ambleside.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
1 Engineering issues for FPCCD VTX Detector Y. Sugimoto KEK July 24, 2007.
Fine Pixel CCD for ILC Vertex Detector ‘08 7/31 Y. Takubo (Tohoku U.) for ILC-FPCCD vertex group ILC vertex detector Fine Pixel CCD (FPCCD) Test-sample.
ILC VXD Review, Fermilab, October 23, 2007 Hans-Günther Moser, MPI für Physik DEPFET Devices Hans-Gunther Moser for the DEPFET Collaboration (
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
LCWS08, Chicago, November 2008 Ladislav Andricek, MPI fuer Physik, HLL 1 DEPFET Active Pixel Sensors - Status and Plans - Ladislav Andricek for the DEPFET.
DEAR SDD --> SIDDHARTA
Fig. 1: Cross section of a circular DEPMOS- FET pixel cell. Charges collected in the “in- ternal gate’ modulate the transistor current. DEPMOSFET team,
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Radiation hardness of Monolithic Active Pixel Sensors (MAPS)
- Performance Studies & Production of the LHCb Silicon Tracker Stefan Koestner (University Zurich) on behalf of the Silicon Tracker Collaboration IT -
Prague, Marcel Trimpl, Bonn University DEPFET-Readout Concept for TESLA based on Current Mode Signal Processing Markus Schumacher on behalf.
FEE 2006, Perugia, Marcel Trimpl, University of Bonn VIth Workshop on Front End Electronics Perugia, Mai 2006 M.Trimpl DEPFET – collaboration:
LHCb Vertex Detector and Beetle Chip
The Belle II DEPFET Pixel Detector
Characterization of irradiated MOS-C with X-rays using CV-measurements and gated diode techniques Q. Wei, L. Andricek, H-G. Moser, R. H. Richter, Max-Planck-Institute.
-1-CERN (11/24/2010)P. Valerio Noise performances of MAPS and Hybrid Detector technology Pierpaolo Valerio.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
MPI Semiconductor Laboratory, The XEUS Instrument Working Group, PNSensor The X-ray Evolving-Universe Spectroscopy (XEUS) mission is under study by the.
Design and Technology of DEPFET Active Pixel Sensors for Future e+e- Linear Collider Experiments G. Lutz a, L. Andricek a, P. Fischer b, K. Heinzinger.
Position Sensitive Detector Conference, September 2005, LiverpoolGerhard Lutz 1 (Semiconductor) Pixel Detectors for charged particles (and other applications)
Particle Physics School Colloquium, May C. Koffmane, MPI für Physik, HLL, TU Berlin  DEPFETs at ILC and Belle II  Module Concept  results with.
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
H.-G. Moser Max-Planck-Institut für Physik 2nd DEPFET workshop 3-6 May 2009 Open Issues Readout cycle: 10 µs or 20 µs ? Advantages of 20 µs: - smaller.
Highlights from the VTX session Marc Winter & Massimo Caccia R&D reports: – DEPFET (M. Trimpl) – CCD (S. Hillert) – UK-CMOS (J.Velthuis) – Continental-CMOS.
1 Characterization of Pilot Run Modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik IMPRS Young Scientist Workshop Ringberg.
Low Mass, Radiation Hard Vertex Detectors R. Lipton, Fermilab Future experiments will require pixelated vertex detectors with radiation hardness superior.
FP-CCD GLD VERTEX GROUP Presenting by Tadashi Nagamine Tohoku University ILC VTX Ringberg Castle, May 2006.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
TILC08, Sendai, March DEPFET Active Pixel Sensors for the ILC Marcel Vos for the DEPFET Collaboration (
H.-G. Moser Max-Planck-Institut for Physics, Munich Vertex07 Lake Placid, NY 9/25/2007 DEPFET Active Pixel Detectors H.-G. Moser on behalf of the DEPFET.
Clear Performance and Demonstration of a novel Clear Concept for DEPFET Active Pixel Sensors Stefan Rummel Max-Planck-Institut für Physik – Halbleiterlabor.
Radiation Hardness of DEPFET Pixel Sensors Andreas Ritter IMPRS - Young Scientist Workshop 2010, Ringberg 1.
1 Test of Electrical Multi-Chip Module for Belle II Pixel Detector DPG-Frühjahrstagung der Teilchenphysik, Wuppertal 2015, T43.1 Belle II Experiment DEPFET.
1 First large DEPFET pixel modules for the Belle II Pixel Detector Felix Müller Max-Planck-Institut für Physik DPG-Frühjahrstagung der Teilchenphysik,
ASICs1 Drain Current Digitizer Chip (DCD) Status and Future Plans.
Testing PXD6 - testing plans
 Silicon Vertex Detector Upgrade for the Belle II Experiment
The DEPFET for the ILC Vertex Detector
Jan Soldat, Heidelberg University for the DSSC ASIC design groups
First Testbeam results
DEPFET Active Pixel Sensors (for the ILC)
The Belle II Vertex Pixel Detector (PXD)
Lars Reuen, 7th Conference on Position Sensitive Devices, Liverpool
Yasuhiro Sugimoto KEK 17 R&D status of FPCCD VTX Yasuhiro Sugimoto KEK 17
Vertex Detector Overview Prototypes R&D Plans Summary.
Status of CCD Vertex Detector R&D for GLC
Presentation transcript:

Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Status DEPFET Principle Readout modes Projects: –XEUS –WIMS –ILC ILC Testbeam results Summary & Outlook Univ. of Bonn: M.Karagounis, R.Kohrs, H.Krüger, M. Mathes, L.Reuen, C.Sandow, E.von Törne, M.Trimpl, J.Velthuis, N.Wermes Univ. of Mannheim: P.Fischer, F.Giesen, I.Peric Politecnico di Milano: M. Porro MPI Halbleiterlabor Munich: O Hälker, S. Herrmann, L.Andricek, G.Lutz, H.G. Moser, R.H.Richter, M.Schnecke, L.Strüder, J.Treis, P.Lechner, S. Wölfel THCA of Tsinghua Univ.: C. Zhang, S.N. Zhang

Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Principle A p-FET transistor is integrated in every pixel. By sidewards depletion potential minimum created below internal gate. Electrons, collected at internal gate, modulate transistor current ~1µm p+ n+ rear contact drainbulksource p s y m m e t r y a x i s n+ n internal gate top gateclear n - n+ p µm MIP

Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Principle Advantages: –Fast signal collection due to fully depleted bulk –Low noise due to small capacitance and amplification in pixel –Transistor can be switched off by external gate – charge collection is then still active ! –Non-destructive readout Disadvantages: –Need to clear internal gate. This still requires high voltages. 2 readout modes: –Source follower mode readout. Signal is voltage (XEUS) –Drain readout. Signal is current (WIMS&ILC) required

Vertex05, 8/11/05Jaap Velthuis, Bonn University SOURCE FOLLOWER Constant bias current I Bias provided Charge at internal gate translates into source voltage node change Speed depends on overall load capacitance Slow (t≈C L /g m ≈3µs), but excellent noise Clear Clear- gate DrainSource Gate DEPMOS device I bias Buffer / amplifier I bias

Vertex05, 8/11/05Jaap Velthuis, Bonn University DRAIN readout Measure I drain directly Fast response: limited by RC time of input resistance CURO and C load (~ns) Clear Clear- gate SourceDrain Gate DEPMOS device V out CURO: current amplifier transimpedence amplifier

Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET Applications DEPFET under study for: –XEUS Exploring the early universe by imaging spectroscopy in the X- ray band Need noise < 4e - Source follower mode –WIMS Wide-band Imaging and Multi-band Spectrometer, part of China’s spacelab mission Drain readout –ILC Need row rates of 20MHz Drain readout

Vertex05, 8/11/05Jaap Velthuis, Bonn University XEUS Exploring the early universe by imaging spectroscopy in the X- ray band Detector: –Device active area 7.68 x 7.68 cm 2 –Monolithic sensor integrated onto a single 6“ wafer –Device thickness 450 µm –Pixel size 75 x 75 µm 2 –Position resolution ca. 30 µm –Total 1024 x 1024 pixel cells –Total readout time / frame 1.25 ms –Processing time per detector row 2.5 µs

Vertex05, 8/11/05Jaap Velthuis, Bonn University Excellent noise Single pixel device 10 µs shaping Room temperature (22° C)

Vertex05, 8/11/05Jaap Velthuis, Bonn University Excellent noise Large structure (64x64): –75 x 75 µm 2 pixel size –45 µm gate circumference / 5 µm gate length –Drain in center of pixel –Cut gate geometry –Curved edge –Double metal Operated at: –Pixel current 30 µA –Line processing time 25 µs Energy resolution: 126 eV Mn-Ka Line corresponding to 4.9 e - ENC Noise dependence  Pixel readout noise: 63 – 14eV (17 – 3.6 e - ENC)

Vertex05, 8/11/05Jaap Velthuis, Bonn University WIMS Wide-band Imaging and Multi-band Spectrometer (WIMS) is part of China’s spacelab mission. Observe high-energy bursts, transients and fast-varying sources over a broad spectral range simultaneously Using Macro pixels –Pixel size 0.5x0.5 mm 2 –“Si-drift chamber readout using DEPFET” Room temperature Back side illuminates, fast drain readout Shaping time: 3μs Clear pulse period 1 ms with width 3 μs

Vertex05, 8/11/05Jaap Velthuis, Bonn University DEPFET for ILC Basic system Clearing ILC requirements Ladder proposal Power consumption Thinning Radiation hardness Testbeam results

Vertex05, 8/11/05Jaap Velthuis, Bonn University Basic system Select and Clear signals provided by SWITCHER –64 x 2 outputs –Max ΔV = 25V Read out row-wise: CURO –current based read out –128 channels –CDS –real time hit finding & zero-suppression –row rate up to 24 MHz Gate Switcher Clear Switcher Current Readout CUROII DEPFET Matrix 64x128 pixels, 36 x 28.5µm 2

Vertex05, 8/11/05Jaap Velthuis, Bonn University HighE vs non-HighE HighE extra n-type implant –Moves internal gate deeper into bulk –Clearing takes places deeper in the bulk –Lower signals, but easier clearing clear Internal gate channel Optional HighE implant

Vertex05, 8/11/05Jaap Velthuis, Bonn University Clearing CURO measures: I sig,i +I ped,i & I ped,i+1 Need to remove all charge such that I ped,i+1 =I ped,i COMPLETE CLEAR possible for HighE with low voltages (~7V) ⇒ possible to make radhard SWITCHER in standard CMOS HighE

Vertex05, 8/11/05Jaap Velthuis, Bonn University ILC requirements Time structure: 1 train of 2820 crossings in ~1 ms every ~200ms –Hit density: for r = 15 mm: ~ 100 tracks / mm 2 / train –Row readout rate: > 20 MHz –Occupany < 0.5 % Radiation length: ~0.1% X 0 per layer –thinned sensors (50 μm) –low power consumption Radiation tolerance:  200 krad (for 5 years operation) Resolution: few µm (  pixel size ≤ 25 x 25 µm 2 )

Vertex05, 8/11/05Jaap Velthuis, Bonn University Ladder proposal Modules have active area ~13 x 100 mm 2 Read out on both sides. Detectors 50µm thick, with 300µm thick frame yields 0.11% X 0 SWITCHER & CURO chips connected by bump bonding SWITCHER CURO

Vertex05, 8/11/05Jaap Velthuis, Bonn University ILC Power Measured Power Dissipation: –Switcher: 6.3 mW per active channel at 50MHz –CURO: 2.8 mW / channel Assumed Power Dissipation of DEPFET Sensor: –0.5 mW per active pixel –duty cycle: 1/200 Only active pixel dissipate power –1024 active pixels per module –8 modules in Layer 1 => 8192 active pixels Expected Power Dissipation in Layer 1 –Sensor: 8192 x 0.5 mW / 200 = 20 mW –Switcher: 16 x 6.3 mW / 200 = 0.5 mW –Curo: 8192 x 2.8 mW / 200 = 114 mW For Layer 1 Sum: 135 mW For 5 Layer DEPFET Vertex Detector: Total ~ 3.6 W  no active cooling

Vertex05, 8/11/05Jaap Velthuis, Bonn University Thinning sensor wafer handle wafer 1. implant backside on sensor wafer 2. bond wafers with SiO 2 in between 3. thin sensor side to desired thick. 4. process DEPFETs on top side 5. etch backside up to oxide/implant first ‘dummy’ samples: 50µm silicon with 350µm frame thinned diode structures: leakage current: <1nA /cm 2 Thinning technology for active area established

Vertex05, 8/11/05Jaap Velthuis, Bonn University Radiation hardness Irradiations with 60 Co and X-rays (~17keV) up to ~1Mrad (SiO 2 ) Threshold shift of the MOSFET (~4V) can be compensated by bias voltage shift 60 Co

Vertex05, 8/11/05Jaap Velthuis, Bonn University Testbeam DESY test beam with 6 GeV e- Bonn ATLAS telescope system: –double sided strip detectors –pitch 50 µm (no intermediate strips) –readout rate 4.5 kHz (telescope only) DEPFET: – 128x64 (28.5x36 µm 2 ) –450 µm thick –Frame time 1.8 ms DEPFET beam 1234 Scintillator 3 x 3 mm²

Vertex05, 8/11/05Jaap Velthuis, Bonn University Pedestal & Noise Pedestal: average signal after hit removal Noise: standard deviation after pedestal, common mode and hit removal

Vertex05, 8/11/05Jaap Velthuis, Bonn University Clustering Look for clusters: –Seed pixel largest signal seed cut >5σ –Neighbours Neighbour cut >2σ Combine signals seed & neighbors S/N 3x3 =125.9±0.2 –Noise higher than expected –Next generation expect to reduce noise by factor 2

Vertex05, 8/11/05Jaap Velthuis, Bonn University Position resolution Hit positions reconstructed using the CoG algorithm Note: pixelsize X=36µm Y=28.5µm Terrible, but … due to multiple scattering

Vertex05, 8/11/05Jaap Velthuis, Bonn University Multiple scattering E electron only 6GeV Telescope planes 10cm apart Minimize effect scattering by selecting hard tracks using  2 cut Price: lose statistics

Vertex05, 8/11/05Jaap Velthuis, Bonn University Multiple scattering (II) Performed simulation. Using Fraction remaining tracks, telescope uncertainty can be estimated. From CERN testbeam know that σ intrinsic ~5-6µm, but not compared S/N tel σ X =9.71±0.02µm, σ Y =9.31±0.02µm σ intrinsic XY 5µm µm3.92.7

Vertex05, 8/11/05Jaap Velthuis, Bonn University HighE matrix HighE implant moves internal gate into bulk –Lower signal –Easier clearing Results: –S/N 3x3 =99.5±0.1 –σ X =9.11±0.03µm, σ Y =8.80±0.03µm –Somewhat larger clusters yield better position resolution Poor stats & fit σ intrinsic XY 5µm µm1.9--

Vertex05, 8/11/05Jaap Velthuis, Bonn University Summary DEPFET integrates MOSFET in fully depleted bulk. Developed towards: –XEUS mission: Slow readout(source follower mode) Excellent noise (~2.2e - ) –WIMS mission Very large pixels (0.5x0.5mm 2 ) Si-drift chamber readout by DEPFET Fast(er) readout (noise=19e - )

Vertex05, 8/11/05Jaap Velthuis, Bonn University Summary (II) Developed towards ILC. Meets already demands on –Radiation length (0.11 X 0 ) –Radiation hardness (ΔVth –Power consumption (<5W full detector) –Position resolution ( ≲ 5µm) Excellent S/N: –S/N=126 without HighE –S/N=100 with HighE –⇒ can thin detector to 50µm with still good S/N

Vertex05, 8/11/05Jaap Velthuis, Bonn University Outlook Improving the system to increase readout speed. –Individual parts already function well at ILC speed Testbeam at DESY (6GeV electrons) with better mechanics and at CERN. Goals: –Improve S/N –Test zero suppression Build 512x512 matrix

Vertex05, 8/11/05Jaap Velthuis, Bonn University Author list Univ. of Bonn: M.Karagounis, R.Kohrs, H.Krüger, M. Mathes, L.Reuen, C.Sandow, E.von Törne, M.Trimpl, J.Velthuis, N.Wermes Univ. of Mannheim: P.Fischer, F.Giesen, I.Peric Politecnico di Milano: M. Porro MPI Halbleiterlabor Munich: O Hälker, S. Herrmann, L.Andricek, G.Lutz, H.G. Moser, R.H.Richter, M.Schnecke, L.Strüder, J.Treis, P.Lechner, S. Wölfel THCA of Tsinghua Univ.: C. Zhang, S.N. Zhang