Reconfigurable Ultra Low Power LNA for 2.4GHz Wireless Sensor Networks TarisT., Mabrouki A., Kraïmia H., Deval Y., Begueret J-B. Bordeaux, France.

Slides:



Advertisements
Similar presentations
Importance of the LNA. Importance of the LNA Importance of the LNA Friis’ Formula.
Advertisements

Amir Hossein Masnadi and Shahriar Mirabbasi IEEE NEWCAS, June 2012
High efficiency Power amplifier design for mm-Wave
1 A Low Power CMOS Low Noise Amplifier for Ultra-wideband Wireless Applications 指導教授 : 林志明 學生 : 黃世一
A System Level Design for a Bluetooth Front-end Receiver Group #789 Supervisor Angela Lin Shekar Nethi Shadi Tawfik Jan H. Mikkelsen January 9, 2004 AALBORG.
A Zero-IF 60GHz Transceiver in 65nm CMOS with > 3.5Gb/s Links
Design of RF CMOS Low Noise Amplifiers Using a Current Based MOSFET Model Virgínia Helena Varotto Baroncini Oscar da Costa Gouveia Filho.
08/16/01.
Low Power RF/Analog Amplifier Design Tong Zhang Auburn University Tong Zhang Auburn University.
An Integrated Solution for Suppressing WLAN Signals in UWB Receivers LI BO.
2.4-GHZ RF TRANSCEIVER FOR IEEE B WIRELESS LAN UF# UF#
RF Wakeup Sensor – On-Demand Wakeup for Zero Idle Listening and Zero Sleep Delay.
An Ultra-Wideband CMOS Low Noise Amplifier for 3–5-GHz UWB System
ECE1352F University of Toronto 1 60 GHz Radio Circuit Blocks 60 GHz Radio Circuit Blocks Analog Integrated Circuit Design ECE1352F Theodoros Chalvatzis.
1 Wideband LNA for a Multistandard Wireless Receiver in 0.18μm CMOS 指導教授 : 林志明 學生 : 黃世一
University of Toronto (TH2B - 01) 65-GHz Doppler Sensor with On-Chip Antenna in 0.18µm SiGe BiCMOS Terry Yao, Lamia Tchoketch-Kebir, Olga Yuryevich, Michael.
Alessandra Pipino – XXIX cycle
EE592:Graduation Project Ahmad Jisrawi
Outline Direct conversion architecture Time-varying DC offsets Solutions on offset Harmonic mixing principle FLEX pager receiver Individual receiver blocks.
A 77-79GHz Doppler Radar Transceiver in Silicon
Pro-VIZOR: Process Tunable Virtually Zero Margin Low Power Adaptive RF for Wireless Systems Presented by: Shreyas Sen June 11, Paper 27.3, DAC 08.
Low Power Wireless Design Dr. Ahmad Bahai National Semiconductor.
Design of LNA at 2.4 GHz Using 0.25 µm Technology
Seoul National University CMOS for Power Device CMOS for Power Device 전파공학 연구실 노 영 우 Microwave Device Term Project.
Study of 60GHz Wireless Network & Circuit Ahn Yong-joon.
An Ultra-Wide-Band GHz LNA in 0.18µm CMOS technology RF Communication Systems-on-chip Spring 2007.
S. -L. Jang, Senior Member, IEEE, S. -H. Huang, C. -F. Lee, and M. -H
ICECS, Athens – December 15th 2010
A Novel 2.4 GHz CMOS Class-E Power Amplifier with Efficient Power Control for Wireless Communications R. Meshkin, A. Saberkari*, and M. Niaboli Department.
ADS Design Guide.
A Ku-Band Interference-Rejection CMOS Low-Noise Amplifier Using Current-Reused Stacked Common-Gate Topology Adviser : Zhi-Ming Lin Postgraduate : Chia-Wei.
Presenter: Chun-Han Hou ( 侯 鈞 瀚)
MSICT – RF Communication SoC POWER OPTIMIZED LC VCO & MIXER CO-DESIGN Daniel Götz, Milosz Sroka June 20th, 2006.
A 1.5-V 6-10-GHz Low LO-Power Broadband CMOS Folded-Mirror Mixer for UWB Radio H.-W. Chung, H.-C. Kuo, and H.-R. Chuang Institute of Computer and Communication.
1 EE 499 Wireless Communications Project by Team 4: Arati NagarkarHemant Samtani Supriya HerwadkarChinmay Shete Shivani KaushalSalil Sawhney.
Final Project in RFCS in the MINT Program of the UPC by Sven Günther
A New RF CMOS Gilbert Mixer With Improved Noise Figure and Linearity Yoon, J.; Kim, H.; Park, C.; Yang, J.; Song, H.; Lee, S.; Kim, B.; Microwave Theory.
18/10/20151 Calibration of Input-Matching and its Center Frequency for an Inductively Degenerated Low Noise Amplifier Laboratory of Electronics and Information.
Measurement of Integrated PA-to-LNA Isolation on Si CMOS Chip Ryo Minami , JeeYoung Hong , Kenichi Okada , and Akira Matsuzawa Tokyo Institute of Technology,
1 A CMOS 5-GHz Micro-Power LNA 指導教授 : 林志明 教授 學生 : 黃世一 Hsieh-Hung Hsieh and Liang-Hung Lu Department of Electrical Engineering and Graduate Institute of.
ECE4430 Project Presentation
CommunicationElectronics Principles & Applications Third Edition Chapter 6 Radio Transmitters ©2001 Glencoe/McGraw-Hill Louis E. Frenzel.
A GHz Fourth-Harmonic Voltage-Controlled Oscillator in 130nm SiGe BiCMOS Technology Yang Lin and David E. Kotecki Electrical and Computer Engineering.
Phan Tuan Anh Dec Reconfigurable Multiband Multimode LNA for LTE/GSM, WiMAX, and IEEE a/b/g/n 17 th IEEE ICECS 2010, Athens, Greece.
A NEW METHOD TO STABILIZE HIGH FREQUENCY HIGH GAIN CMOS LNA RF Communications Systems-on-chip Primavera 2007 Pierpaolo Passarelli.
1 Your Name Your Department or Company Date, 2015.
class B, AB and D rf power amplifiers in 0,40 um cmos teChnology
RFIC – Atlanta June 15-17, 2008 RMO1C-3 An ultra low power LNA with 15dB gain and 4.4db NF in 90nm CMOS process for 60 GHz phase array radio Emanuel Cohen.
Jinna Yan Nanyang Technological University Singapore
AUTHORS: Christian IZQUIERDO Franck MONTAUDON Philippe CATHELIN
Final Design Review of a 1 GHz LNA / Down-Converter Charles Baylis University of South Florida April 22, 2005.
© Sean Nicolson, BCTM 2006 © Sean Nicolson, 2007 A 2.5V, 77-GHz, Automotive Radar Chipset Sean T. Nicolson 1, Keith A. Tang 1, Kenneth H.K. Yau 1, Pascal.
Ph.D. Candidate: Yunlei Li Advisor: Jin Liu 9/10/03
Rakshith Venkatesh 14/27/2009. What is an RF Low Noise Amplifier? The low-noise amplifier (LNA) is a special type of amplifier used in the receiver side.
ECE 4710: Lecture #37 1 Link Budget Analysis  BER baseband performance determined by signal to noise ratio ( S / N ) at input to detector (product, envelope,
3-Stage Low Noise Amplifier Design at 12Ghz
Project: IEEE P Working Group for Wireless Personal Area Networks (WPANS) Submission Title: [UWB System Design for Low Power, Precision Location.
Mackenzie Cook Mohamed Khelifi Jonathon Lee Meshegna Shumye Supervisors: John W.M. Rogers, Calvin Plett 1.
8.5 SATELLITE COMMUNICATIONS
M. Atef, Hong Chen, and H. Zimmermann Vienna University of Technology
Department of Electrical Engineering, National Taiwan University of Science and Technology EURASIP Journal on Wireless Communications and Networking.
High Gain Transimpedance Amplifier with Current Mirror Load By: Mohamed Atef Electrical Engineering Department Assiut University Assiut, Egypt.
Integrated Phased Array Systems in Silicon
Ultra-low Power Components
WUR Link Budget Analysis
WUR Link Budget Analysis
Communication 40 GHz Anurag Nigam.
A 1 V RF front-end for both HIPERLAN2 and a
A Novel 1. 5V CMFB CMOS Down-Conversion Mixer Design for IEEE 802
5.8GHz CMOS 射頻前端接收電路 晶片設計實作 5.8GHz CMOS Front-End Circuit Design
Presentation transcript:

Reconfigurable Ultra Low Power LNA for 2.4GHz Wireless Sensor Networks TarisT., Mabrouki A., Kraïmia H., Deval Y., Begueret J-B. Bordeaux, France

2 ICECS 2010 – Décembre – Athens, Greece  Context  RF Front End Specifications  Circuit design  Conclusion & Perspectives OUTLINE

3 ICECS 2010 – Décembre – Athens, Greece  Context  RF Front End Specifications  Circuit design  Conclusion & Perspectives OUTLINE

4 ICECS 2010 – Décembre – Athens, Greece Context MicroElectronic Milestones  Computers in the seventies Low cost Si technologies Digital processing  The Cellular phone in the 90’s Telecommunication network RF circuits and systems  Wireless Sensor Network & RFID in the early 21th century Gate reduction Energy (scavenging, management…)

5 ICECS 2010 – Décembre – Athens, Greece Context Wireless Sensor Network Configuration …by matching the RF link budget to the communication scenario  Reduce the node power consumption… RF link 1 RF link 2 A B C Wireless Sensor Network

6 ICECS 2010 – Décembre – Athens, Greece  Context  RF Front End Specifications  Circuit design  Conclusion & Perspectives OUTLINE

7 ICECS 2010 – Décembre – Athens, Greece RF Front End Specifications Node Top-down  Node at system level RF Tx/Rx Power unit µControllerADCSensor Memory RF Link Budget 1 RF Link Budget 2 RFFE Demodulator  Node Rx at system level NF Rx1 NF Rx2 P Rx SNR dem NF Rx = P Rx - SNR dem +( log BW)

8 ICECS 2010 – Décembre – Athens, Greece RF Front End Specifications RF Link Parameters NF Rx = P Rx – SNR dem + ( log BW) P Rx P Tx node A node B distance R P Rx = P Tx - L path (R) Attenuation L(R) BFSK modulation BER~10 -3 SNR dem ~10 dB Channel Characteristic 2.4 GHz ISM Band BW = 10MHz RNF Rx P Rx L path (dB) 10 m26 dB-83 dBm90 dB 20 m13 dB-95 dBm102 dB 30 m7 dB-102 dBm109 dB

9 ICECS 2010 – Décembre – Athens, Greece RF Front End Specifications RFFE and NF specification RFFE Demodulator  Node Rx at system level NF Rx1 NF Rx2 P Rx SNR dem  RFFE and system specification NF Rx is mainly supported by the LNA ! LNA LO Mixer NF Rx1 NF Rx2

10 ICECS 2010 – Décembre – Athens, Greece RF Front End Specifications RFFE and NF specification RFFE Demodulator  Node Rx at system level NF Rx1 NF Rx2 P Rx SNR dem  RFFE and system specification NF Rx is mainly supported by the LNA ! LNA LO Mixer NF Rx1 NF Rx2 RNF LNA G LNA NF mixer 10 m25 dB5 dB18 dB 20 m11 dB10 dB18 dB 30 m4.5 dB14 dB18 dB

11 ICECS 2010 – Décembre – Athens, Greece  Context  RF Front End Specifications  Circuit design  Conclusion & Perspectives OUTLINE

12 ICECS 2010 – Décembre – Athens, Greece Circuit Design Low Power RF Metric V th ~ V th + 100mV …by maximizing the FOM LP  Optimization of RF performances versus power consumption in the transistor… RF skills Current consumption Optimized biasing!

13 ICECS 2010 – Décembre – Athens, Greece Circuit Design Amplifier Configurations …active load configurations are preferred!  To compensate for the low g m in MI region… bias in out RFRF MNMN MPMP IdId in out RFRF MNMN MPMP IdId RFRF in MNMN MPMP IdId Single Transistor Stage (STS)Self Biased Inverter (SBI) OR ?

14 ICECS 2010 – Décembre – Athens, Greece Circuit Design …the one of self biased inverter is the largest ! Single Transistor Stage (STS) Gain (dB) 10G G Frequency (Hz) 100G Self Biased Inverter (SBI)  Comparison of the Gain BandWidth (GBW) product… GBW STS GBW SBI Amplifier Configuration

15 ICECS 2010 – Décembre – Athens, Greece Circuit Design LNA topology LNA 2.4GHz – CMOS 0.13µm RFRF in M1M1 M2M2 IdId V pol1 R pol1 ClCl VDD LgLg C m1 V pol2 R pol2 M3M3 C m2 C m3 L pk out VCC R in/buffer 3 0.8V C dec Current reuse with feedback buffer Digital Control GHz LNA core Off-chip

16 ICECS 2010 – Décembre – Athens, Greece Circuit Design Post Layout Performances S 21 S 11 NF 900µm 700µm

17 ICECS 2010 – Décembre – Athens, Greece  Context  RF Front End Specifications  Circuit design  Conclusion & Perspectives OUTLINE

18 ICECS 2010 – Décembre – Athens, Greece Conclusion & Perspectives  Match the radio performances with the RF link budget to reduce the power consumption of nodes in WSN  A matter of Noise Figure/Gain reconfiguration in the LNA  Best tradeoff between RF skills and current consumption in MI region  Select the topology providing the largest GBW System Considerations Circuit analysis RNF LNA G LNA 10 m25 dB5 dB 20 m11 dB10 dB 30 m4.5 dB14 dB PdcNF LNA G LNA 60 µW4.4 dB12.2 dB 90 µW4 dB13.1 dB 120 µW3.8 dB14.6 dB Requirement Good agreement

19 ICECS 2010 – Décembre – Athens, Greece Conclusion & Perspectives DoneNext step LNA LO Mixer NF Rx1 NF Rx2  A mixer to be designed in MI region  Gilbert Cell with current bleeding topology  A VCO with low power techniques  Negative resistance topology P dc NF mixer G mixer 200 µW18 dB5-8 dB Last step P dc 100 µW-80 dBc/Hz2.4 GHz

20 ICECS 2010 – Décembre – Athens, Greece Thank you for your Attention