Presentation is loading. Please wait.

Presentation is loading. Please wait.

Final Project in RFCS in the MINT Program of the UPC by Sven Günther

Similar presentations


Presentation on theme: "Final Project in RFCS in the MINT Program of the UPC by Sven Günther"— Presentation transcript:

1 Final Project in RFCS in the MINT Program of the UPC by Sven Günther
A 90-nm Wideband Merged CMOS LNA and Mixer Exploiting Noise Cancellation Final Project in RFCS in the MINT Program of the UPC by Sven Günther

2 Scope Introduction Wideband LNA LNA Core and Noise Analysis
Final LNA Topology Merged LNA and Mixer Measurement and Simulation Results Conclusion RFCS - MINT Program

3 1. Introduction Why do we need wideband RF receivers?
Many number of wireless LAN standards in different frequency bands Use for Software Defined Radio (SDR) with single flexible receiver Less power consumption and chip area RFCS - MINT Program

4 2. Wideband LNA Topologies Common-gate LNA Resistive feedback LNA
Distributed amplifier LNA Inductive source-degeneration common-source LNA (resistive feed back/LC-bandpass at the input) Common-gate LNA Noise Figure: F = 1 + γ/α RFCS - MINT Program

5 3. LNA Core and Noise Analysis
Cascode structure Input impedance RFCS - MINT Program

6 3. LNA Core and Noise Analysis
Assumption that Thermal Noise is Main Noise Source Input Power Matching Condition: RFCS - MINT Program

7 3. LNA Core and Noise Analysis
Noise Factor Optimum Noise Factor for For Rin=100 Ω, Rs=50 Ω, gm1=28.28 mS, gm3=8.28 RFCS - MINT Program

8 4. Final LNA Topology M3 and M4 pMOS due to less Vth
M5 to M8 inductively degenerated for Output Current Noise Reduction RFCS - MINT Program

9 5. Merged LNA and Mixer Less transistors in signal path
Lower non-linearities Less power consumption RFCS - MINT Program

10 5. Merged LNA and Mixer Final Noise Factor
For the design with I=0.7 mA, RL=350 Ω, A=0.25 mV (amplitude of single-ended LO signal) RFCS - MINT Program

11 6. Measurement and Simulation Results
RFCS - MINT Program

12 7. Conclusion Merged LNA and Mixer realized in 90 nm CMOS Compact Size
Low Power Consumption Suitable for multiband operation Power Gain 12.1 dB Voltage Gain 20 dB RF Frequency 0.1 ~ 3.85 GHz IF Freqeuncy 70 MHz NFSSB,min 8.4 dB (fRF=2.1 GHz) NFSSB,max 11.5 dB (fRF=0.1, 3.85 GHz) S11 < -10 dB 1dB CP (Input Ref.) dBm (fRF=2.3 GHz) IDD at VDD (Core) 8.15 mA at 1.2 V Area 0.88 mm2 Technology 90 nm CMOS RFCS - MINT Program

13 Thank you for your Attention!
Any Questions? RFCS - MINT Program

14 Bibliography [1] A. Amer, E. Hegazi, and H. F. Ragaie, “A 90-nm Wideband Merged CMOS LNA and Mixer Exploiting Noise Cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp , Feb 2007. [2] H. Sjöland, A. Sanjaani, and A. Abidi, “A merged CMOS LNA and mixer for a WCDMA receiver,” IEEE J. Solid- State Circuits, vol. 38, no. 6, pp. 1045–1050, Jun 2003. [3] H. Darabi and A. Abidi, “Noise in RF-CMOS mixers: A simple physical model,” IEEE J. Solid-State Circuits, vol. 35, no. 1, pp. 15–25, Jan [4] M. Kawashima, H. Hayashi, T. Nakagawa, K. Nishikawa, and K. Araki, “A GHz broadband RF front-end for direct conversion transceivers,” in IEEE MTT-S 2002 Int. Microwave Symp. Dig., pp. 927–930. [5] V. J. Arkesteijn, E. A. M. Klumperink, and B. Nauta, “A wideband high-linearity RF receiver front-end in CMOS,” in Proc. ESSCIRC, 2004, pp. 71–74. RFCS - MINT Program


Download ppt "Final Project in RFCS in the MINT Program of the UPC by Sven Günther"

Similar presentations


Ads by Google