Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure.

Slides:



Advertisements
Similar presentations
CS 483 – SD SECTION BY DR. DANIYAL ALGHAZZAWI (3) Information Security.
Advertisements

Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure.
Advanced Encryption Standard For Smart Card Security Aiyappan Natarajan David Jasinski Kesava R.Talupuru Lilian Atieno Advisor: Prof. Wayne Burleson.
Idongesit Ebong (1-1) Jenna Fu (1-2) Bowei Gai (1-3) Syed Hussain (1-4) Jonathan Lee (1-5) Design Manager: Myron Kwai Overall Project Objective: Design.
Idongesit Ebong (1-1) Jenna Fu (1-2) Bowei Gai (1-3) Syed Hussain (1-4) Jonathan Lee (1-5) Design Manager: Myron Kwai Overall Project Objective: Design.
1 The AES block cipher Niels Ferguson. 2 What is it? Block cipher: encrypts fixed-size blocks. Design by two Belgians. Chosen from 15 entries in a competition.
Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure.
E-Voting Machine - Design Presentation Group M1 Bohyun Jessica Kim Jonathan Chiang Chi Ho Yoon Donald Cober Mon. Oct 13th Beginning Gate Level Layout Secure.
Idongesit Ebong (1-1) Jenna Fu (1-2) Bowei Gai (1-3) Syed Hussain (1-4) Jonathan Lee (1-5) Design Manager: Myron Kwai Overall Project Objective: Design.
Noise Canceling in 1-D Data: Presentation #2 Seri Rahayu Abd Rauf Fatima Boujarwah Juan Chen Liyana Mohd Sharipp Arti Thumar M2 Jan 24, 2005 Architecture.
Idongesit Ebong (1-1) Jenna Fu (1-2) Bowei Gai (1-3) Syed Hussain (1-4) Jonathan Lee (1-5) Design Manager: Myron Kwai Overall Project Objective: Design.
Team W1 Design Manager: Rebecca Miller 1. Bobby Colyer (W11) 2. Jeffrey Kuo (W12) 3. Myron Kwai (W13) 4. Shirlene Lim (W14) Stage VI: February 25 h 2004.
Idongesit Ebong (1-1) Jenna Fu (1-2) Bowei Gai (1-3) Syed Hussain (1-4) Jonathan Lee (1-5) Design Manager: Myron Kwai Overall Project Objective: Design.
Team W3: Anthony Marchetta Derek Ritchea David Roderick Adam Stoler Milestone 3: Feb. 4 th Size Estimates/Floorplan Overall Project Objective: Design an.
DES 1 Data Encryption Standard DES 2 Data Encryption Standard  DES developed in 1970’s  Based on IBM Lucifer cipher  U.S. government standard  DES.
Idongesit Ebong (1-1) Jenna Fu (1-2) Bowei Gai (1-3) Syed Hussain (1-4) Jonathan Lee (1-5) Design Manager: Myron Kwai Overall Project Objective: Design.
E-Voting Machine - Design Presentation Group M1 Bohyun Jessica Kim Jonathan Chiang Chi Ho Yoon Donald Cober Mon. Sept 29 System Hardware Component Diagram.
Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure.
1 Chapter 3 – Block Ciphers and the Data Encryption Standard Modern Block Ciphers  now look at modern block ciphers  one of the most widely used types.
Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure.
Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure.
1 Chapter 3 – Block Ciphers and the Data Encryption Standard Modern Block Ciphers  now look at modern block ciphers  one of the most widely used types.
Team W1 Design Manager: Rebecca Miller 1. Bobby Colyer (W11) 2. Jeffrey Kuo (W12) 3. Myron Kwai (W13) 4. Shirlene Lim (W14) Stage VII: March 1 st 2004.
Team W1 Design Manager: Rebecca Miller 1. Bobby Colyer (W11) 2. Jeffrey Kuo (W12) 3. Myron Kwai (W13) 4. Shirlene Lim (W14) Stage III: February 11 h 2004.
Team W1 Design Manager: Rebecca Miller 1. Bobby Colyer (W11) 2. Jeffrey Kuo (W12) 3. Myron Kwai (W13) 4. Shirlene Lim (W14) Stage VIII: March 24 th 2004.
Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure.
Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure.
Sprinkler Buddy Presentation #8: “Testing/Finalization of all Modules and Global Placement” 3/26/2007 Team M3 Kartik Murthy Panchalam Ramanujan Sasidhar.
1 GPS Waypoint Navigation Team M-2: Charles Norman (M2-1) Julio Segundo (M2-2) Nan Li (M2-3) Shanshan Ma (M2-4) Design Manager: Zack Menegakis Presentation.
ICS 454: Principles of Cryptography
Team W3: Anthony Marchetta Derek Ritchea David Roderick Adam Stoler Milestone 5: Feb. 18 th Component Layout Overall Project Objective: Design an Air-Fuel.
Team W3: Anthony Marchetta Derek Ritchea David Roderick Adam Stoler Milestone 4: Feb. 11 th Gate Level Design Overall Project Objective: Design an Air-Fuel.
M2: Team Paradigm :: Milestone 3 2-D Discrete Cosine Transform Group M2: Tommy Taylor Brandon Hsiung Changshi Xiao Bongkwan Kim Project Manager: Yaping.
Team W1 Design Manager: Rebecca Miller 1. Bobby Colyer (W11) 2. Jeffrey Kuo (W12) 3. Myron Kwai (W13) 4. Shirlene Lim (W14) Stage II: February 4 th 2004.
Team W1 Design Manager: Rebecca Miller 1. Bobby Colyer (W11) 2. Jeffrey Kuo (W12) 3. Myron Kwai (W13) 4. Shirlene Lim (W14) Stage II: 26 th January 2004.
M2: Team Paradigm :: Milestone 5 2-D Discrete Cosine Transform Group M2: Tommy Taylor Brandon Hsiung Changshi Xiao Bongkwan Kim Project Manager: Yaping.
1 GPS Waypoint Navigation Team M-2: Charles Norman (M2-1) Julio Segundo (M2-2) Nan Li (M2-3) Shanshan Ma (M2-4) Design Manager: Zack Menegakis Presentation.
M2: Team Paradigm :: Milestone 4 2-D Discrete Cosine Transform Group M2: Tommy Taylor Brandon Hsiung Changshi Xiao Bongkwan Kim Project Manager: Yaping.
Idongesit Ebong (1-1) Jenna Fu (1-2) Bowei Gai (1-3) Syed Hussain (1-4) Jonathan Lee (1-5) Design Manager: Myron Kwai Overall Project Objective: Design.
Team W1 Design Manager: Rebecca Miller 1. Bobby Colyer (W11) 2. Jeffrey Kuo (W12) 3. Myron Kwai (W13) 4. Shirlene Lim (W14) Stage III: February 9 h 2004.
Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure.
Team W1 1. Bobby Colyer (W11) 2. Jeffrey Kuo (W12) 3. Myron Kwai (W13) 4. Shirlene Lim (W14) Stage I: 21 st January 2004 DESIGN PROPOSAL Presentation #1:
Idongesit Ebong (1-1) Jenna Fu (1-2) Bowei Gai (1-3) Syed Hussain (1-4) Jonathan Lee (1-5) Design Manager: Myron Kwai Overall Project Objective: Design.
Noise Canceling in 1-D Data: Presentation #4 Seri Rahayu Abd Rauf Fatima Boujarwah Juan Chen Liyana Mohd Sharipp Arti Thumar M2 Feb 14 th, 2005 Gate Level.
Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure.
Team W1 Design Manager: Rebecca Miller 1. Bobby Colyer (W11) 2. Jeffrey Kuo (W12) 3. Myron Kwai (W13) 4. Shirlene Lim (W14) Stage IV: February 18 h 2004.
Scan Based Attack on Dedicated Hardware Implementation of Data Encryption Standard Bo Yang ECE Dept Polytechnic Univ Kaijie Wu ECE Dept Univ of Illinois.
Random Number Generator Dimtriy Solmonov W1-1 David Levitt W1-2 Jesse Guss W1-3 Sirisha Pillalamarri W1-4 Matt Russo W1-5 Design Manager – Thiago Hersan.
Data Encryption Standard (DES). Symmetric Cryptography  C = E(P,K)  P = D(C,K)  Requirements  Given C, the only way to obtain P should be with  the.
The Digital Encryption Standard CSCI 5857: Encoding and Encryption.
1 Chapter 3 Ciphers Mechanism that decides the process of encryption/decryption Stream Cipher: Bit-by-bit encryption / decryption Block Cipher: Block-by-block.
TE/CS 536 Network Security Spring 2006 – Lectures 6&7 Secret Key Cryptography.
Feistel Cipher Structure
Data Encryption Standard (DES) © 2000 Gregory Kesden.
Classical &ontemporyryptology 1 Block Cipher Today’s most widely used ciphers are in the class of Block Ciphers Today’s most widely used ciphers are in.
DES Algorithm Data Encryption Standard. DES Features Block cipher, 64 bits per block 64-bit key, with only 56 bits effective ECB mode and CBC mode.
AES Advanced Encryption Standard. Requirements for AES AES had to be a private key algorithm. It had to use a shared secret key. It had to support the.
Cracking the DES Encryption
Data Encryption Standard (DES)
DES Analysis and Attacks CSCI 5857: Encoding and Encryption.
RTL Design Methodology Transition from Pseudocode & Interface
Encrypted Transaction with Triple DES
Module :MA3036NI Symmetric Encryption -3 Lecture Week 4.
Information and Computer Security CPIS 312 Lab 6 & 7 1 TRIGUI Mohamed Salim Symmetric key cryptography.
Howd - Zur Hung Eric Lai Wei Jie Lee Yu - Chiang Lee Design Manager: Jonathan P. Lee [M2] Huffman Encoder Project Presentation #3 February 7 th, 2007 Overall.
Provides Confidentiality
Data Encryption Standard
Alpha Blending and Smoothing
DATA ENCRYPTION STANDARD (DES)
Presentation transcript:

Encryption Transaction with 3DES Team W2 Yervant Dermenjian (W21) Taewan Kim (W22) Evan Mengstab(W23) Xiaochun Zhu(W24) Objective: To implement a secure credit card transaction using 3DES encryption and Kerberos-style authentication. Current Stage: Architecture Proposal 01/26/2004 Design Manager: Rebecca Miller

 Identity theft is a growing problem  Sensitive information never transmitted  Uses existing cards and phone network  Credit and charge card fraud costs cardholders and issuers hundreds of millions of dollars each year Security In Making Purchases

Encryption/Decryption Example  Input : Credit Information  Output : Cipher Text Credit #: Credit #: Security code: 319 Security code: 319 Input Pin # : 4510 Input Pin # : 4510 key1: 0x32, 0x37, 0x33, 0x39, 0x38, 0x32, 0x30, 0x31 key1: 0x32, 0x37, 0x33, 0x39, 0x38, 0x32, 0x30, 0x31 key2: 0x34, 0x38, 0x35, 0x36, 0x32, 0x33, 0x38, 0x39 key2: 0x34, 0x38, 0x35, 0x36, 0x32, 0x33, 0x38, 0x39 key3: 0x33, 0x31, 0x39, 0x34, 0x35, 0x31, 0x30, 0xFF key3: 0x33, 0x31, 0x39, 0x34, 0x35, 0x31, 0x30, 0xFF Expiration Date: 08/2008 Expiration Date: 08/2008 Plain Text : 0x30, 0x38, 0x2F, 0x32, 0x30, 0x30, 0x38, 0xFF Plain Text : 0x30, 0x38, 0x2F, 0x32, 0x30, 0x30, 0x38, 0xFF 0x2F, 0x81, 0xA8, 0xBF, 0x3C, 0x6B, 0xDF, 0xB4 0x2F, 0x81, 0xA8, 0xBF, 0x3C, 0x6B, 0xDF, 0xB4

3DES Algorithm Flowchart (I) DES DES -1 DES Plain Text DES -1 DES Cipher Text K1K1K1K1 K2K2K2K2 K3K3K3K3 Encryption Decryption

3DES Algorithm Flowchart (II) 64 bit plain Text cipher Text Initial Permutation Final Permutation 16 Rounds Encryption Extension 32 bit 48 bit 48 Bit XOR S Box 32 Bit XOR Right Half Left Half Subkey SingleRound

3DES Algorithm Flowchart (III) Final Permutation 48 bit Sub-key [ I ] I=16? Key Schedule 56bit Key I=1 Left/Right Half 28 bits Left Barrel Shift Initial Permutation I=I+1 Ready Y N

Verification of 3DES in C

I/O Pins  Required Inputs:  Provided Output : 32 bits data input at pins 32 bits data input at pins 1 bit reset at pin 1 bit reset at pin 1 bit encryption/decryption mode control at pin 1 bit encryption/decryption mode control at pin 32 bits data output at pins 32 bits data output at pins 1 bit ready at pin 1 bit ready at pin 1 bit clock at pin 1 bit clock at pin

Block Diagram Key2 56’b SRAM Barrel Shifter I: 0,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0 PC-2 (wiring) Key set Current and next keys 2 x 48’b Register 48’b 32’b 56’b 1’b 56’b 48’b PC (wiring) XOR Expansion 32’b 48’b Plaintext 64’b SRAM R[I] 32’b L[I] 32’b S-box 8x4x16x4’b ROM L[I-1] 32’b R[I-1] 32’b XOR 48’b 64’b Register P 32’b Key1,3 56’b SRAM 32’b output 32’b input demux 16’b ROM IP -1 (wiring) 32’b input 64’b mux 32’b mux

S Box 4LUT 16x4bit ROM 4LUT 16x4bit ROM 4LUT 16x4bit ROM 4LUT 16x4bit ROM Mux FF 4 {1:6} {2:5} {1},{6} {6} {1} 4 4

Architecture Analysis  The Key schedules can be pinelined with the encryption process. While the key[I-1] is used to encrypt the text, the key[I] will be generated at the same time.  SRAM is used to store the keys and the plain text; 2x48’b registers are used to store the sub-keys during scheduling  Permutation is implemented by wiring  The data input pins are designed to be 32 bits. We need to clock over 2 clock cycles for 64 bits keys; 32 output pins need to clock over 2 clock cycles for the 64 bits cypher text.

Behavior Verilog Test Bench

Transistor Estimation (I)  Transistor Count for Key Schedule 2 x 56 bits SRAM: 672 T 2 x 56 bits SRAM: 672 T 2 x 28 bits Barrel Shifter: 112 T 2 x 28 bits Barrel Shifter: 112 T 160 X 2-1 Mux/Demux:645 T 160 X 2-1 Mux/Demux: 645 T 2 x 48 bits Register: 2 x 48 bits Register: 1152 T PC (4 bit Adder & 4bit Register): PC (4 bit Adder & 4bit Register): 160 T lookup table(16 bit ROM&4bit Decoder): lookup table(16 bit ROM&4bit Decoder): 104 T Control Logic: Control Logic: 500 T

Transistor Estimation (II)  Transistor Count for Encryption Process 1 x 64 bits SRAM: 384 T 1 x 64 bits SRAM: 384 T 80 bit XOR: 640 T 80 bit XOR: 640 T 8 x S Box (256bits ROM & 6 bit Decoder) : 5728 T 2 x 64 bits Register: 2 x 64 bits Register: 1536 T PC (4 bit Adder & 4bit Register): PC (4 bit Adder & 4bit Register): 160 T 192 x 2-1 Mux/Demux: 192 x 2-1 Mux/Demux: 1536 T Control Logic: Control Logic: 500 T  Total Transistor Count:  Total Transistor Count: ~ T

Current Status  Design Proposal (100% done)  Architecture Proposal (100% done) High Level Simulation by C code High Level Simulation by C code Mapping of algorithm into hardware Mapping of algorithm into hardware Behavioral Verilog simulation and test bench Behavioral Verilog simulation and test bench  To be done Floor Plan Floor Plan Gate-level design Gate-level design Chip Layout Chip Layout

Design Decisions  Store only 2 keys at a time  Reduce Barrel shifting control values from 1/2 to 0/1 to use only a single bit  Two memory blocks for keys used so Key1 does not have to be inputted twice for Key3

Problems and Questions  Should we choose SRAM or registers to store the sub-keys after scheduling?  Permutation implemented by wiring may cause messy wire crossover. Can we implement this with logic?  The transistors required to store all sub-keys is very large. We hope to be able to only store two sub-keys at a time.