Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory

Slides:



Advertisements
Similar presentations
MODULE SYSTEM LOGIC GATE CIRCUIT DQ CMOS Inverter ASIC Full-Custom Semi-Custom Programmable FPGA PLD Cell-Based Gate Arrays General Purpose DRAM & SRAM.
Advertisements

DC Response DC Response: Vout vs. Vin for a gate Ex: Inverter
Lecture 5: DC & Transient Response
VLSI Design Lecture 3a: Nonideal Transistors. Outline Transistor I-V Review Nonideal Transistor Behavior Velocity Saturation Channel Length Modulation.
Lecture 3: CMOS Transistor Theory. CMOS VLSI DesignCMOS VLSI Design 4th Ed. 3: CMOS Transistor Theory2 Outline  Introduction  MOS Capacitor  nMOS I-V.
Chapter 6 The Field Effect Transistor
EE466: VLSI Design Lecture 02 Non Ideal Effects in MOSFETs.
Introduction to CMOS VLSI Design Lecture 15: Nonideal Transistors David Harris Harvey Mudd College Spring 2004.
Introduction to CMOS VLSI Design Lecture 19: Nonideal Transistors
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
CMOS Transistor and Circuits
Introduction to CMOS VLSI Design Lecture 5 CMOS Transistor Theory
Introduction to CMOS VLSI Design MOS Behavior in DSM.
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Design and Implementation of VLSI Systems (EN0160) Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley –
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
Lecture 11: MOS Transistor
Lecture #26 Gate delays, MOS logic
10/8/2004EE 42 fall 2004 lecture 171 Lecture #17 MOS transistors MIDTERM coming up a week from Monday (October 18 th ) Next Week: Review, examples, circuits.
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response
VLSI Design Lecture 3a: Nonideal Transistors
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response Credits: David Harris Harvey Mudd College (Material taken/adapted from Harris’ lecture.
Design and Implementation of VLSI Systems (EN1600) lecture07 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Lecture #16 OUTLINE Diode analysis and applications continued
The metal-oxide field-effect transistor (MOSFET)
CSCE 612: VLSI System Design Instructor: Jason D. Bakos.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
11/3/2004EE 42 fall 2004 lecture 271 Lecture #27 MOS LAST TIME: NMOS Electrical Model – Describing the I-V Characteristics – Evaluating the effective resistance.
DC and transient responses Lezione 3
EE4800 CMOS Digital IC Design & Analysis
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
CMOS VLSI Design4: DC and Transient ResponseSlide 1 EE466: VLSI Design Lecture 05: DC and transient response – CMOS Inverters.
Introduction to CMOS VLSI Design Nonideal Transistors.
EE4800 CMOS Digital IC Design & Analysis
Lecture 2: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: DC & Transient Response Greco/Cin-UFPE (Material taken/adapted from Harris’ lecture notes)
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
© Digital Integrated Circuits 2nd Devices VLSI Devices  Intuitive understanding of device operation  Fundamental analytic models  Manual Models  Spice.
Transistor Characteristics EMT 251. Outline Introduction MOS Capacitor nMOS I-V Characteristics (ideal) pMOS I-V Characteristics (ideal)
Lecture 3: CMOS Transistor Theory
ECE 342 Electronic Circuits 2. MOS Transistors
1 Delay Estimation Most digital designs have multiple data paths some of which are not critical. The critical path is defined as the path the offers the.
Dec 2010Performance of CMOS Circuits 1 Instructed by Shmuel Wimer Eng. School, Bar-Ilan University Credits: David Harris Harvey Mudd College (Some material.
NOTICES Project proposal due now Format is on schedule page
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction.
1 Slides adapted from: N. Weste, D. Harris, CMOS VLSI Design, © Addison-Wesley, 3/e, 2004 MOS Transistor Theory.
CSCE 613: Fundamentals of VLSI Chip Design Instructor: Jason D. Bakos.
Introduction to CMOS VLSI Design MOS devices: static and dynamic behavior.
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
UNIT I MOS TRANSISTOR THEORY AND PROCESS TECHNOLOGY
CMOS VLSI Design CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2007.
The MOS Transistor Polysilicon Aluminum. The NMOS Transistor Cross Section n areas have been doped with donor ions (arsenic) of concentration N D - electrons.
CP 208 Digital Electronics Class Lecture 6 March 4, 2009.
Introduction to CMOS VLSI Design CMOS Transistor Theory
Wujie Wen, Assistant Professor Department of ECE
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
CMOS VLSI Design 4th Ed. EEL 6167: VLSI Design Wujie Wen, Assistant Professor Department of ECE Lecture 3A: CMOs Transistor Theory Slides adapted from.
3: CMOS Transistor Theory
VLSI System Design Lect. 2.1 CMOS Transistor Theory
VLSI Design CMOS Transistor Theory
DC & Transient Response
Introduction to CMOS VLSI Design Lecture 5: DC & Transient Response
Lecture 3: CMOS Transistor Theory
CP-406 VLSI System Design CMOS Transistor Theory
Lecture 5: DC & Transient Response
Lecture 3: CMOS Transistor Theory
Lecture 3: CMOS Transistor Theory
Presentation transcript:

Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory Credits: David Harris Harvey Mudd College (Material taken/adapted from Harris’ lecture notes)

Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V Characteristics Gate and Diffusion Capacitance Pass Transistors RC Delay Models 3: CMOS Transistor Theory

Introduction So far, we have treated transistors as ideal switches An ON transistor passes a finite amount of current Depends on terminal voltages Derive current-voltage (I-V) relationships Transistor gate, source, drain all have capacitance I = C (DV/Dt) -> Dt = (C/I) DV Capacitance and current determine speed Also explore what a “degraded level” really means 3: CMOS Transistor Theory

MOS Capacitor Gate and body form MOS capacitor Operating modes Accumulation Depletion Inversion 3: CMOS Transistor Theory

Terminal Voltages Mode of operation depends on Vg, Vd, Vs Vgs = Vg – Vs Vgd = Vg – Vd Vds = Vd – Vs = Vgs - Vgd Source and drain are symmetric diffusion terminals By convention, source is terminal at lower voltage Hence Vds  0 nMOS body is grounded. First assume source is 0 too. Three regions of operation Cutoff Linear Saturation 3: CMOS Transistor Theory

nMOS Cutoff No channel Ids = 0 3: CMOS Transistor Theory

nMOS Linear Channel forms Current flows from d to s e- from s to d Ids increases with Vds Similar to linear resistor 3: CMOS Transistor Theory

nMOS Saturation Channel pinches off Ids independent of Vds We say current saturates Similar to current source 3: CMOS Transistor Theory

I-V Characteristics In Linear region, Ids depends on How much charge is in the channel? How fast is the charge moving? 3: CMOS Transistor Theory

Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel Qchannel = 3: CMOS Transistor Theory

Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel Qchannel = CV C = 3: CMOS Transistor Theory

Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel Qchannel = CV C = Cg = eoxWL/tox = CoxWL V = Cox = eox / tox 3: CMOS Transistor Theory

Channel Charge MOS structure looks like parallel plate capacitor while operating in inversion Gate – oxide – channel Qchannel = CV C = Cg = eoxWL/tox = CoxWL V = Vgc – Vt = (Vgs – Vds/2) – Vt Cox = eox / tox 3: CMOS Transistor Theory

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field between source and drain v = 3: CMOS Transistor Theory

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field between source and drain v = mE m called mobility E = 3: CMOS Transistor Theory

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field between source and drain v = mE m called mobility E = Vds/L Time for carrier to cross channel: t = 3: CMOS Transistor Theory

Carrier velocity Charge is carried by e- Carrier velocity v proportional to lateral E-field between source and drain v = mE m called mobility E = Vds/L Time for carrier to cross channel: t = L / v 3: CMOS Transistor Theory

nMOS Linear I-V Now we know How much charge Qchannel is in the channel How much time t each carrier takes to cross 3: CMOS Transistor Theory

nMOS Linear I-V Now we know How much charge Qchannel is in the channel How much time t each carrier takes to cross 3: CMOS Transistor Theory

nMOS Linear I-V Now we know How much charge Qchannel is in the channel How much time t each carrier takes to cross 3: CMOS Transistor Theory

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain When Vds > Vdsat = Vgs – Vt Now drain voltage no longer increases current 3: CMOS Transistor Theory

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain When Vds > Vdsat = Vgs – Vt Now drain voltage no longer increases current 3: CMOS Transistor Theory

nMOS Saturation I-V If Vgd < Vt, channel pinches off near drain When Vds > Vdsat = Vgs – Vt Now drain voltage no longer increases current 3: CMOS Transistor Theory

nMOS I-V Summary Shockley 1st order transistor models 3: CMOS Transistor Theory

Example Consider a 0.6 mm process From AMI Semiconductor tox = 100 Å m = 350 cm2/V*s Vt = 0.7 V Plot Ids vs. Vds Vgs = 0, 1, 2, 3, 4, 5 Use W/L = 4/2 l 3: CMOS Transistor Theory

pMOS I-V All dopings and voltages are inverted for pMOS Mobility mp is determined by holes Typically 2-3x lower than that of electrons mn 120 cm2/V*s in AMI 0.6 mm process Thus pMOS must be wider to provide same current In this class, assume mn / mp = 2 *** plot I-V here 3: CMOS Transistor Theory

Capacitance Any two conductors separated by an insulator have capacitance Gate to channel capacitor is very important Creates channel charge necessary for operation Source and drain have capacitance to body Across reverse-biased diodes Called diffusion capacitance because it is associated with source/drain diffusion 3: CMOS Transistor Theory

Gate Capacitance Cgs = eoxWL/tox = CoxWL = CpermicronW Cpermicron is typically about 2 fF/mm (for L=0.6m) 3: CMOS Transistor Theory

Diffusion Capacitance Csb, Cdb Undesirable, called parasitic capacitance Capacitance depends on area and perimeter Use small diffusion nodes Comparable to Cg or for diffusion w/ contact Reduced for merged transistors (uncontacted) Varies with process 3: CMOS Transistor Theory

Pass Transistors We have assumed source is grounded What if source > 0? e.g. pass transistor passing VDD 3: CMOS Transistor Theory

Pass Transistors We have assumed source is grounded What if source > 0? e.g. pass transistor passing VDD Vg = VDD If Vs > VDD-Vt, Vgs < Vt Hence transistor would turn itself off nMOS pass transistors pull no higher than VDD-Vtn Called a degraded “1” Approach degraded value slowly (low Ids) pMOS pass transistors pull no lower than Vtp 3: CMOS Transistor Theory

Pass Transistor Ckts 3: CMOS Transistor Theory

Pass Transistor Ckts 3: CMOS Transistor Theory

Effective Resistance Shockley models have limited value Not accurate enough for modern transistors Too complicated for much hand analysis Simplification: treat transistor as resistor Replace Ids(Vds, Vgs) with effective resistance R Ids = Vds/R R averaged across switching of digital gate Too inaccurate to predict current at any given time But good enough to predict delays 3: CMOS Transistor Theory

RC Delay Model Use equivalent circuits for MOS transistors Ideal switch + capacitance and ON resistance Unit nMOS has resistance R, capacitance C Unit pMOS has resistance 2R, capacitance C Capacitance proportional to width Resistance inversely proportional to width 3: CMOS Transistor Theory

RC Values Capacitance C = Cg = Cs = Cd = 2 fF/mm of gate width Values similar across many processes Resistance R  6 KW*mm in 0.6um process Improves with shorter channel lengths Unit transistors May refer to minimum contacted device (4/2 l) Or maybe 1 mm wide device Doesn’t matter as long as you are consistent 3: CMOS Transistor Theory

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 3: CMOS Transistor Theory

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 3: CMOS Transistor Theory

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter 3: CMOS Transistor Theory

Inverter Delay Estimate Estimate the delay of a fanout-of-1 inverter d = 6RC 3: CMOS Transistor Theory