© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.

Slides:



Advertisements
Similar presentations
Physical structure of a n-channel device:
Advertisements

Digital Integrated Circuits© Prentice Hall 1995 Devices Jan M. Rabaey The Devices.
Digital Integrated Circuits© Prentice Hall 1995 Devices The MOS Transistor.
Lecture 3: CMOS Transistor Theory. CMOS VLSI DesignCMOS VLSI Design 4th Ed. 3: CMOS Transistor Theory2 Outline  Introduction  MOS Capacitor  nMOS I-V.
1 ELEC 422 Applied Integrated Circuit Design Section 2: MOS Fundamentals Chuping Liu [Adapted from Rabaey’s Digital Integrated Circuits, ©2003, J. Rabaey.
Chapter 6 The Field Effect Transistor
Department of EECS University of California, Berkeley EECS 105 Fall 2003, Lecture 12 Lecture 12: MOS Transistor Models Prof. Niknejad.
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004.
Introduction to CMOS VLSI Design Lecture 5 CMOS Transistor Theory
VLSI Design CMOS Transistor Theory. EE 447 VLSI Design 3: CMOS Transistor Theory2 Outline Introduction MOS Capacitor nMOS I-V Characteristics pMOS I-V.
Design and Implementation of VLSI Systems (EN0160) Prof. Sherief Reda Division of Engineering, Brown University Spring 2007 [sources: Weste/Addison Wesley.
10/8/2004EE 42 fall 2004 lecture 171 Lecture #17 MOS transistors MIDTERM coming up a week from Monday (October 18 th ) Next Week: Review, examples, circuits.
CMOS Digital Integrated Circuits
Design and Implementation of VLSI Systems (EN1600) lecture07 Sherief Reda Division of Engineering, Brown University Spring 2008 [sources: Weste/Addison.
EE415 VLSI Design The Devices: MOS Transistor [Adapted from Rabaey’s Digital Integrated Circuits, ©2002, J. Rabaey et al.]
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 3: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2004 from CMOS VLSI Design A Circuits and Systems.
Fig. 5.1 Physical structure of the enhancement-type NMOS transistor: (a) perspective view; (b) cross section. Typically L = 1 to 10 m, W = 2 to 500.
Digital Integrated Circuits A Design Perspective
Reading: Finish Chapter 6
Week 8b OUTLINE Using pn-diodes to isolate transistors in an IC
Chap. 5 Field-effect transistors (FET) Importance for LSI/VLSI –Low fabrication cost –Small size –Low power consumption Applications –Microprocessors –Memories.
Lecture 2: CMOS Transistor Theory
VLSI design Lecture 1: MOS Transistor Theory. CMOS VLSI Design3: CMOS Transistor TheorySlide 2 Outline  Introduction  MOS Capacitor  nMOS I-V Characteristics.
© Digital Integrated Circuits 2nd Devices VLSI Devices  Intuitive understanding of device operation  Fundamental analytic models  Manual Models  Spice.
Metal-Oxide-Semiconductor Field Effect Transistors
1 Frequency response I As the frequency of the processed signals increases, the effects of parasitic capacitance in (BJT/MOS) transistors start to manifest.
Lecture 2 Chapter 2 MOS Transistors. Voltage along the channel V(y) = the voltage at a distance y along the channel V(y) is constrained by the following.
Digital Integrated Circuits© Prentice Hall 1995 Introduction The Devices.
ECE 342 Electronic Circuits 2. MOS Transistors
MOS Capacitors MOS capacitors are the basic building blocks of CMOS transistors MOS capacitors distill the basic physics of MOS transistors MOS capacitors.
NOTICES Project proposal due now Format is on schedule page
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
The Devices Digital Integrated Circuit Design Andrea Bonfanti DEIB
© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic.
Jan M. Rabaey The Devices Digital Integrated Circuits© Prentice Hall 1995 Introduction.
Norhayati Soin 06 KEEE 4426 WEEK 7/1 6/02/2006 CHAPTER 2 WEEK 7 CHAPTER 2 MOSFETS I-V CHARACTERISTICS CHAPTER 2.
Introduction to Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs) Chapter 7, Anderson and Anderson.
© Digital Integrated Circuits 2nd Devices Device Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated Circuits: A.
1 Fundamentals of Microelectronics  CH1 Why Microelectronics?  CH2 Basic Physics of Semiconductors  CH3 Diode Circuits  CH4 Physics of Bipolar Transistors.
Junction Capacitances The n + regions forms a number of planar pn-junctions with the surrounding p-type substrate numbered 1-5 on the diagram. Planar junctions.
EE141 © Digital Integrated Circuits 2nd Devices 1 Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje.
ECE442: Digital ElectronicsCSUN, Spring-2010-Zahid MOS Transistor ECE442: Digital Electronics.
1 Chapter 5. Metal Oxide Silicon Field-Effect Transistors (MOSFETs)
Digital Integrated Circuits© Prentice Hall 1995 Devices Jan M. Rabaey The Devices.
EE141 © Digital Integrated Circuits 2nd Devices 1 Lecture 5. CMOS Device (cont.) ECE 407/507.
EE141 © Digital Integrated Circuits 2nd Devices 1 Goal of this lecture  Present understanding of device operation  nMOS/pMOS as switches  How to design.
EE141 © Digital Integrated Circuits 2nd Devices 1 Lecture 6. CMOS Device (cont) ECE 407/507.
Device models Mohammad Sharifkhani.
Device EE4271 VLSI Design Dr. Shiyan Hu Office: EERC 518
Digital Integrated Circuits A Design Perspective
Digital Integrated Circuits A Design Perspective
CMOS VLSI Design CMOS Transistor Theory
Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris Harvey Mudd College Spring 2007.
MOS Transistor Other handouts Project Description Other “assignments”
The MOS Transistor Polysilicon Aluminum. The NMOS Transistor Cross Section n areas have been doped with donor ions (arsenic) of concentration N D - electrons.
EE141 © Digital Integrated Circuits 2nd Devices 1 Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 11: September 22, 2014 MOS Transistor.
CP 208 Digital Electronics Class Lecture 6 March 4, 2009.
Transistors (MOSFETs)
Introduction to CMOS VLSI Design CMOS Transistor Theory
EE 466/586 VLSI Design Partha Pande School of EECS Washington State University
© Digital Integrated Circuits 2nd Devices Device Dr. Shiyan Hu Office: EERC 731 Adapted and modified from Digital Integrated Circuits: A.
ECE 333 Linear Electronics
CSE477 L03 MOS Transistor.1Irwin&Vijay, PSU, 2003 CSE477 VLSI Digital Circuits Fall 2003 Lecture 03: MOS Transistor Mary Jane Irwin (
Damu, 2008EGE535 Fall 08, Lecture 21 EGE535 Low Power VLSI Design Lecture #2 MOSFET Basics.
CMOS VLSI Design 4th Ed. EEL 6167: VLSI Design Wujie Wen, Assistant Professor Department of ECE Lecture 3A: CMOs Transistor Theory Slides adapted from.
CMOS Inverter First Glance
EE141 Chapter 3 VLSI Design The Devices March 28, 2003.
Copyright © 2004 The McGraw-Hill Companies, Inc. All rights reserved.
Presentation transcript:

© Digital Integrated Circuits 2nd Devices Digital Integrated Circuits A Design Perspective The Devices Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic July 30, 2002

© Digital Integrated Circuits 2nd Devices Goal of this chapter  Present intuitive understanding of device operation  Introduction of basic device equations  Introduction of models for manual analysis  Introduction of models for SPICE simulation  Analysis of secondary and deep-sub- micron effects  Future trends

© Digital Integrated Circuits 2nd Devices The Diode Mostly occurring as parasitic element in Digital ICs

© Digital Integrated Circuits 2nd Devices Depletion Region

© Digital Integrated Circuits 2nd Devices Diode Current

© Digital Integrated Circuits 2nd Devices Models for Manual Analysis

© Digital Integrated Circuits 2nd Devices Diode Model

© Digital Integrated Circuits 2nd Devices SPICE Parameters

© Digital Integrated Circuits 2nd Devices What is a Transistor? A Switch! |V GS | An MOS Transistor

© Digital Integrated Circuits 2nd Devices The MOS Transistor Polysilicon Aluminum

© Digital Integrated Circuits 2nd Devices MOS Transistors - Types and Symbols D S G D S G G S DD S G NMOS Enhancement NMOS PMOS Depletion Enhancement B NMOS with Bulk Contact

© Digital Integrated Circuits 2nd Devices Threshold Voltage: Concept

© Digital Integrated Circuits 2nd Devices The Threshold Voltage

© Digital Integrated Circuits 2nd Devices The Body Effect

© Digital Integrated Circuits 2nd Devices Current-Voltage Relations A good ol’ transistor Quadratic Relationship x V DS (V) I D (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V ResistiveSaturation V DS = V GS - V T

© Digital Integrated Circuits 2nd Devices Transistor in Linear

© Digital Integrated Circuits 2nd Devices Transistor in Saturation Pinch-off

© Digital Integrated Circuits 2nd Devices Current-Voltage Relations Long-Channel Device

© Digital Integrated Circuits 2nd Devices A model for manual analysis

© Digital Integrated Circuits 2nd Devices Current-Voltage Relations The Deep-Submicron Era Linear Relationship -4 V DS (V) x 10 I D (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V Early Saturation

© Digital Integrated Circuits 2nd Devices Velocity Saturation  (V/µm)  c = 1.5  n ( m / s )  sat = 10 5 Constant mobility (slope = µ) Constant velocity

© Digital Integrated Circuits 2nd Devices Perspective I D Long-channel device Short-channel device V DS V DSAT V GS - V T V GS = V DD

© Digital Integrated Circuits 2nd Devices I D versus V GS x V GS (V) I D (A) x V GS (V) I D (A) quadratic linear Long Channel Short Channel

© Digital Integrated Circuits 2nd Devices I D versus V DS -4 V DS (V) x 10 I D (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V x V DS (V) I D (A) VGS= 2.5 V VGS= 2.0 V VGS= 1.5 V VGS= 1.0 V ResistiveSaturation V DS = V GS - V T Long ChannelShort Channel

© Digital Integrated Circuits 2nd Devices A unified model for manual analysis S D G B NB For PMOS, use Vmax=max(…) instead of Vmin

© Digital Integrated Circuits 2nd Devices Simple Model versus SPICE V DS (V) I D (A) Velocity Saturated Linear Saturated V DSAT =V GT V DS =V DSAT V DS =V GT

© Digital Integrated Circuits 2nd Devices A PMOS Transistor x V DS (V) I D (A) Assume all variables negative! VGS = -1.0V VGS = -1.5V VGS = -2.0V VGS = -2.5V

© Digital Integrated Circuits 2nd Devices Transistor Model for Manual Analysis

© Digital Integrated Circuits 2nd Devices The Transistor as a Switch

© Digital Integrated Circuits 2nd Devices The Transistor as a Switch

© Digital Integrated Circuits 2nd Devices The Transistor as a Switch

© Digital Integrated Circuits 2nd Devices Unified Model Examples

© Digital Integrated Circuits 2nd Devices MOS Capacitances Dynamic Behavior

© Digital Integrated Circuits 2nd Devices Dynamic Behavior of MOS Transistor

© Digital Integrated Circuits 2nd Devices The Gate Capacitance t ox n + n + Cross section L Gate oxide x d x d L d Polysilicon gate Top view Gate-bulk overlap Source n + Drain n + W

© Digital Integrated Circuits 2nd Devices Gate Capacitance Cut-off ResistiveSaturation Most important regions in digital design: saturation and cut-off

© Digital Integrated Circuits 2nd Devices Gate Capacitance Capacitance as a function of VGS (with VDS = 0) Capacitance as a function of the degree of saturation

© Digital Integrated Circuits 2nd Devices Measuring the Gate Cap

© Digital Integrated Circuits 2nd Devices Diffusion Capacitance Bottom Side wall Channel Source N D Channel-stop implant N A 1 SubstrateN A W x j L S

© Digital Integrated Circuits 2nd Devices Junction Capacitance

© Digital Integrated Circuits 2nd Devices Linearizing the Junction Capacitance Replace non-linear capacitance by large-signal equivalent linear capacitance which displaces equal charge over voltage swing of interest

© Digital Integrated Circuits 2nd Devices Capacitances in 0.25  m CMOS process

© Digital Integrated Circuits 2nd Devices Sub-Threshold Conduction V GS (V) I D (A) VTVT Linear Exponential Quadratic Typical values for S: mV/decade The Slope Factor S is  V GS for I D 2 / I D 1 =10

© Digital Integrated Circuits 2nd Devices Sub-Threshold I D vs V GS V DS from 0 to 0.5V

© Digital Integrated Circuits 2nd Devices Sub-Threshold I D vs V DS V GS from 0 to 0.3V

© Digital Integrated Circuits 2nd Devices Summary of MOSFET Operating Regions  Strong Inversion V GS > V T  Linear (Resistive) V DS < V DSAT  Saturated (Constant Current) V DS  V DSAT  Weak Inversion (Sub-Threshold) V GS  V T  Exponential in V GS with linear V DS dependence

© Digital Integrated Circuits 2nd Devices Parasitic Resistances