CS262 Lecture 9, Win07, Batzoglou Gene Recognition.

Slides:



Advertisements
Similar presentations
Uses of Cloned Genes sequencing reagents (eg, probes) protein production insufficient natural quantities modify/mutagenesis library screening Expression.
Advertisements

The genetic code.
 -GLOBIN MUTATIONS AND SICKLE CELL DISORDER (SCD) - RESTRICTION FRAGMENT LENGTH POLYMORPHISMS (RFLP)
ATG GAG GAA GAA GAT GAA GAG ATC TTA TCG TCT TCC GAT TGC GAC GAT TCC AGC GAT AGT TAC AAG GAT GAT TCT CAA GAT TCT GAA GGA GAA AAC GAT AAC CCT GAG TGC GAA.
RNA Say Hello to DNA’s little friend!. EngageEssential QuestionExplain Describe yourself to long lost uncle. How do the mechanisms of genetics and the.
Supplementary Fig.1: oligonucleotide primer sequences.
Transcription & Translation Worksheet
CS262 Lecture 9, Win07, Batzoglou Gene Recognition.
Gene Recognition Credits for slides: Marina Alexandersson Lior Pachter Serge Saxonov.
Introduction to bioinformatics Lecture 2 Genes and Genomes.
GTCAGATGAGCAAAGTAGACACTCCAGTAACGCGGTGAGTACATTAA exon intron intergene Find Gene Structures in DNA Intergene State First Exon State Intron State.
CS262 Lecture 9, Win07, Batzoglou Rapid Global Alignments How to align genomic sequences in (more or less) linear time.
Gene Recognition Credits for slides: Marina Alexandersson Lior Pachter Serge Saxonov.
Genomics 101 DNA sequencing Alignment Gene identification Gene expression Genome evolution …
Crick’s early Hypothesis Revisited. Or The Existence of a Universal Coding Frame Axel Bernal UPenn Center for Bioinformatics Jean-Louis Lassez Coastal.
CS262 Lecture 15, Win07, Batzoglou Multiple Sequence Alignments.
Gene Recognition Credits for slides: Serafim Batzoglou Marina Alexandersson Lior Pachter Serge Saxonov.
Bioinformatics Gene detection and prediction Gene predictions in prokaryotes Gene predictions in eukaryotes Difficulties of gene prediction Statistical.
Introduction to Molecular Biology. G-C and A-T pairing.
1 Essential Computing for Bioinformatics Bienvenido Vélez UPR Mayaguez Lecture 5 High-level Programming with Python Part II: Container Objects Reference:
Transcription and Translation
 Genetic information, stored in the chromosomes and transmitted to the daughter cells through DNA replication is expressed through transcription to RNA.
In vitro expression of BVDV capsid protein Corpus Christi College, University of Oxford Glycobiology Institute, Department of Biochemistry KOR SHU CHAN.
Today… Genome 351, 8 April 2013, Lecture 3 The information in DNA is converted to protein through an RNA intermediate (transcription) The information in.
IGEM Arsenic Bioremediation Possibly finished biobrick for ArsR by adding a RBS and terminator. Will send for sequencing today or Monday.
Nature and Action of the Gene
FEATURES OF GENETIC CODE AND NON SENSE CODONS
Biological Dynamics Group Central Dogma: DNA->RNA->Protein.
Gene Prediction in silico Nita Parekh BIRC, IIIT, Hyderabad.
Multiple Sequence Alignment. Definition Given N sequences x 1, x 2,…, x N :  Insert gaps (-) in each sequence x i, such that All sequences have the.
More on translation. How DNA codes proteins The primary structure of each protein (the sequence of amino acids in the polypeptide chains that make up.
Genes: Regulation and Structure Many slides from various sources, including S. Batzoglou,
Undifferentiated Differentiated (4 d) Supplemental Figure S1.
Supplemental Table S1 For Site Directed Mutagenesis and cloning of constructs P9GF:5’ GAC GCT ACT TCA CTA TAG ATA GGA AGT TCA TTT C 3’ P9GR:5’ GAA ATG.
Lecture 10, CS5671 Neural Network Applications Problems Input transformation Network Architectures Assessing Performance.
Fig. S1 siControl E2 G1: 45.7% S: 26.9% G2-M: 27.4% siER  E2 G1: 70.9% S: 9.9% G2-M: 19.2% G1: 57.1% S: 12.0% G2-M: 30.9% siRNF31 E2 A B siRNF31 siControl.
PART 1 - DNA REPLICATION PART 2 - TRANSCRIPTION AND TRANSLATION.
TRANSLATION: information transfer from RNA to protein the nucleotide sequence of the mRNA strand is translated into an amino acid sequence. This is accomplished.
Today… Genome 351, 8 April 2013, Lecture 3 The information in DNA is converted to protein through an RNA intermediate (transcription) The information in.
Mark D. Adams Dept. of Genetics 9/10/04
Prodigiosin Production in E. Coli Brian Hovey and Stephanie Vondrak.
Passing Genetic Notes in Class CC106 / Discussion D by John R. Finnerty.
Supplementary materials
Gene Expression. Gene expression All cells in one organism have the same DNA. But different cells have very different functions. In each cell at certain.
Gene Structure Prediction (Gene Finding) I519 Introduction to Bioinformatics, 2012.
Suppl. Figure 1 APP23 + X Terc +/- Terc +/-, APP23 + X Terc +/- G1Terc -/-, APP23 + X G1Terc -/- G2Terc -/-, APP23 + X G2Terc -/- G3Terc -/-, APP23 + and.
RA(4kb)- Atggagtccgaaatgctgcaatcgcctcttctgggcctgggggaggaagatgaggc……………………………………………….. ……………………………………………. ……………………….,……. …tactacatctccgtgtactcggtggagaagcgtgtcagatag.
Example 1 DNA Triplet mRNA Codon tRNA anticodon A U A T A U G C G
Name of presentation Month 2009 SPARQ-ed PROJECT Mutations in the tumor suppressor gene p53 Pulari Thangavelu (PhD student) April Chromosome Instability.
DNA, RNA and Protein.
The response of amino acid frequencies to directional mutation pressure in mitochondrial genomes is related to the physical properties of the amino acids.
Genomics 101 DNA sequencing Alignment Gene identification
Modelling Proteomes.
Supplementary information Table-S1 (Xiao)
Sequence – 5’ to 3’ Tm ˚C Genome Position HV68 TMER7 Δ mt. Forward
Supplemental Table 3. Oligonucleotides for qPCR
GENE MUTATIONS aka point mutations © 2016 Paul Billiet ODWS.
Supplementary Figure 1 – cDNA analysis reveals that three splice site alterations generate multiple RNA isoforms. (A) c.430-1G>C (IVS 6) results in 3.
Huntington Disease (HD)
Section Objectives Relate the concept of the gene to the sequence of nucleotides in DNA. Sequence the steps involved in protein synthesis.
DNA By: Mr. Kauffman.
Gene architecture and sequence annotation
More on translation.
Transcription You’re made of meat, which is made of protein.
Fundamentals of Protein Structure
Python.
Bellringer Please answer on your bellringer sheet:
6.096 Algorithms for Computational Biology Lecture 2 BLAST & Database Search Manolis Piotr Indyk.
Shailaja Gantla, Conny T. M. Bakker, Bishram Deocharan, Narsing R
Presentation transcript:

CS262 Lecture 9, Win07, Batzoglou Gene Recognition

CS262 Lecture 9, Win07, Batzoglou Gene structure exon1 exon2exon3 intron1intron2 transcription translation splicing exon = protein-coding intron = non-coding Codon: A triplet of nucleotides that is converted to one amino acid

CS262 Lecture 9, Win07, Batzoglou Needles in a Haystack

CS262 Lecture 9, Win07, Batzoglou Classes of Gene predictors  Ab initio Only look at the genomic DNA of target genome  De novo Target genome + aligned informant genome(s)  EST/cDNA-based & combined approaches Use aligned ESTs or cDNAs + any other kind of evidence Gene Finding EXON Human tttcttagACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtaccta Macaque tttcttagACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtaccta Mouse ttgcttagACTTTAAAGTTGTCAAGCCGCGTTCTTGATAAAATAAGTATTGGACAACTTGTTAGTCTTCTTTCCAACAACCTGAACAAATTTGATGAAgtatgta-cca Rat ttgcttagACTTTAAAGTTGTCAAGCCGTGTTCTTGATAAAATAAGTATTGGACAACTTATTAGTCTTCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtaccca Rabbit t--attagACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGGCAACTTATTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtaccta Dog t-cattagACTTTAAAGCTGTCAAGCCGTGTTCTGGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTCGATGAAgtatgtaccta Cow t-cattagACTTTGAAGCTATCAAGCCGTGTTCTGGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgta-cta Armadillo gca--tagACCTTAAAACTGTCAAGCCGTGTTTTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtgccta Elephant gct-ttagACTTTAAAACTGTCCAGCCGTGTTCTTGATAAAATAAGTATTGGACAACTTGTCAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtatcta Tenrec tc-cttagACTTTAAAACTTTCGAGCCGGGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtatcta Opossum ---tttagACCTTAAAACTGTCAAGCCGTGTTCTAGATAAAATAAGCACTGGACAGCTTATCAGTCTCCTTTCCAACAATCTGAACAAGTTTGATGAAgtatgtagctg Chicken ----ttagACCTTAAAACTGTCAAGCAAAGTTCTAGATAAAATAAGTACTGGACAATTGGTCAGCCTTCTTTCCAACAATCTGAACAAATTCGATGAGgtatgtt--tg

CS262 Lecture 9, Win07, Batzoglou Signals for Gene Finding 1.Regular gene structure 2.Exon/intron lengths 3.Codon composition 4.Motifs at the boundaries of exons, introns, etc. Start codon, stop codon, splice sites 5.Patterns of conservation 6.Sequenced mRNAs 7.(PCR for verification)

CS262 Lecture 9, Win07, Batzoglou Next Exon: Frame 0 Next Exon: Frame 1

CS262 Lecture 9, Win07, Batzoglou Exon and Intron Lengths

CS262 Lecture 9, Win07, Batzoglou Nucleotide Composition Base composition in exons is characteristic due to the genetic code Amino AcidSLCDNA Codons IsoleucineIATT, ATC, ATA LeucineLCTT, CTC, CTA, CTG, TTA, TTG ValineVGTT, GTC, GTA, GTG PhenylalanineFTTT, TTC MethionineMATG CysteineCTGT, TGC AlanineAGCT, GCC, GCA, GCG GlycineGGGT, GGC, GGA, GGG ProlinePCCT, CCC, CCA, CCG ThreonineTACT, ACC, ACA, ACG SerineSTCT, TCC, TCA, TCG, AGT, AGC TyrosineYTAT, TAC TryptophanWTGG GlutamineQCAA, CAG AsparagineNAAT, AAC HistidineHCAT, CAC Glutamic acidEGAA, GAG Aspartic acidDGAT, GAC LysineKAAA, AAG ArginineRCGT, CGC, CGA, CGG, AGA, AGG Amino AcidSLCDNA Codons IsoleucineIATT, ATC, ATA LeucineLCTT, CTC, CTA, CTG, TTA, TTG ValineVGTT, GTC, GTA, GTG PhenylalanineFTTT, TTC MethionineMATG CysteineCTGT, TGC AlanineAGCT, GCC, GCA, GCG GlycineGGGT, GGC, GGA, GGG ProlinePCCT, CCC, CCA, CCG ThreonineTACT, ACC, ACA, ACG SerineSTCT, TCC, TCA, TCG, AGT, AGC TyrosineYTAT, TAC TryptophanWTGG GlutamineQCAA, CAG AsparagineNAAT, AAC HistidineHCAT, CAC Glutamic acidEGAA, GAG Aspartic acidDGAT, GAC LysineKAAA, AAG ArginineRCGT, CGC, CGA, CGG, AGA, AGG

CS262 Lecture 9, Win07, Batzoglou atg tga ggtgag caggtg cagatg cagttg caggcc ggtgag

CS262 Lecture 9, Win07, Batzoglou Splice Sites (

CS262 Lecture 9, Win07, Batzoglou HMMs for Gene Recognition GTCAGATGAGCAAAGTAGACACTCCAGTAACGCGGTGAGTACATTAA exon intron intergene Intergene State First Exon State Intron State Intron State

CS262 Lecture 9, Win07, Batzoglou HMMs for Gene Recognition exon intron intergene Intergene State First Exon State Intron State Intron State GTCAGATGAGCAAAGTAGACACTCCAGTAACGCGGTGAGTACATTAA

CS262 Lecture 9, Win07, Batzoglou Duration HMMs for Gene Recognition TAAAAAAAAAAAAAAAATTTTTTTTTTTTTTTGGGGGGGGGGGGGGGCCCCCCC Exon1Exon2Exon3 Duration d  i P INTRON (x i | x i-1 …x i-w ) P EXON_DUR (d)  i P EXON((i – j + 2)%3)) (x i | x i-1 …x i-w ) j+2 P 5’SS (x i-3 …x i+4 ) P STOP (x i-4 …x i+3 )

CS262 Lecture 9, Win07, Batzoglou Genscan Burge, 1997 First competitive HMM-based gene finder, huge accuracy jump Only gene finder at the time, to predict partial genes and genes in both strands Features –Duration HMM –Four different parameter sets Very low, low, med, high GC-content

CS262 Lecture 9, Win07, Batzoglou Using Comparative Information

CS262 Lecture 9, Win07, Batzoglou Using Comparative Information Hox cluster is an example where everything is conserved

CS262 Lecture 9, Win07, Batzoglou Patterns of Conservation 30% 1.3% 0.14% 58% 14% 10.2% GenesIntergenic Mutations Gaps Frameshifts Separation 2-fold 10-fold 75-fold 

CS262 Lecture 9, Win07, Batzoglou Comparison-based Gene Finders Rosetta, 2000 CEM, 2000 –First methods to apply comparative genomics (human-mouse) to improve gene prediction Twinscan, 2001 –First HMM for comparative gene prediction in two genomes SLAM, 2002 –Generalized pair-HMM for simultaneous alignment and gene prediction in two genomes NSCAN, 2006 –Best method to-date based on a phylo-HMM for multiple genome gene prediction

CS262 Lecture 9, Win07, Batzoglou Twinscan 1.Align the two sequences (eg. from human and mouse) 2.Mark each human base as gap ( - ), mismatch ( : ), match ( | ) New “alphabet”: 4 x 3 = 12 letters  = { A-, A:, A|, C-, C:, C|, G-, G:, G|, U-, U:, U| } 3.Run Viterbi using emissions e k (b) where b  { A-, A:, A|, …, T| } Emission distributions e k (b) estimated from real genes from human/mouse e I (x|) < e E (x|): matches favored in exons e I (x-) > e E (x-): gaps (and mismatches) favored in introns Example Human : ACGGCGACGUGCACGU Mouse : ACUGUGACGUGCACUU Alignment : ||:|:|||||||||:|

CS262 Lecture 9, Win07, Batzoglou SLAM – Generalized Pair HMM d e Exon GPHMM 1.Choose exon lengths (d,e). 2.Generate alignment of length d+e.

CS262 Lecture 9, Win07, Batzoglou NSCAN—Multiple Species Gene Prediction GENSCAN TWINSCAN N-SCAN TargetGGTGAGGTGACCAAGAACGTGTTGACAGTA Conservation|||:||:||:|||||:|||||||| sequence TargetGGTGAGGTGACCAAGAACGTGTTGACAGTA Conservation|||:||:||:|||||:|||||||| sequence TargetGGTGAGGTGACCAAGAACGTGTTGACAGTA Informant1GGTCAGC___CCAAGAACGTGTAG Informant2GATCAGC___CCAAGAACGTGTAG Informant3GGTGAGCTGACCAAGATCGTGTTGACACAA TargetGGTGAGGTGACCAAGAACGTGTTGACAGTA Informant1GGTCAGC___CCAAGAACGTGTAG Informant2GATCAGC___CCAAGAACGTGTAG Informant3GGTGAGCTGACCAAGATCGTGTTGACACAA... Target sequence: Informant sequences (vector): Joint prediction (use phylo-HMM):

CS262 Lecture 9, Win07, Batzoglou NSCAN—Multiple Species Gene Prediction X X C C Y Y Z Z H H M M R R X X C C Y Y Z Z H H M M R R

CS262 Lecture 9, Win07, Batzoglou Performance Comparison GENSCAN Generalized HMM Models human sequence TWINSCAN Generalized HMM Models human/mouse alignments N-SCAN Phylo-HMM Models multiple sequence evolution GENSCAN Generalized HMM Models human sequence TWINSCAN Generalized HMM Models human/mouse alignments N-SCAN Phylo-HMM Models multiple sequence evolution NSCAN human/mouse > Human/multiple informants

CS262 Lecture 9, Win07, Batzoglou 2-level architecture No Phylo-HMM that models alignments CONTRAST Human tttcttagACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtaccta Macaque tttcttagACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtaccta Mouse ttgcttagACTTTAAAGTTGTCAAGCCGCGTTCTTGATAAAATAAGTATTGGACAACTTGTTAGTCTTCTTTCCAACAACCTGAACAAATTTGATGAAgtatgta-cca Rat ttgcttagACTTTAAAGTTGTCAAGCCGTGTTCTTGATAAAATAAGTATTGGACAACTTATTAGTCTTCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtaccca Rabbit t--attagACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGGCAACTTATTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtaccta Dog t-cattagACTTTAAAGCTGTCAAGCCGTGTTCTGGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTCGATGAAgtatgtaccta Cow t-cattagACTTTGAAGCTATCAAGCCGTGTTCTGGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgta-cta Armadillo gca--tagACCTTAAAACTGTCAAGCCGTGTTTTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtgccta Elephant gct-ttagACTTTAAAACTGTCCAGCCGTGTTCTTGATAAAATAAGTATTGGACAACTTGTCAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtatcta Tenrec tc-cttagACTTTAAAACTTTCGAGCCGGGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTTCCAACAACCTGAACAAATTTGATGAAgtatgtatcta Opossum ---tttagACCTTAAAACTGTCAAGCCGTGTTCTAGATAAAATAAGCACTGGACAGCTTATCAGTCTCCTTTCCAACAATCTGAACAAGTTTGATGAAgtatgtagctg Chicken ----ttagACCTTAAAACTGTCAAGCAAAGTTCTAGATAAAATAAGTACTGGACAATTGGTCAGCCTTCTTTCCAACAATCTGAACAAATTCGATGAGgtatgtt--tg SVM X Y abab

CS262 Lecture 9, Win07, Batzoglou CONTRAST

CS262 Lecture 9, Win07, Batzoglou log P(y | x) ~ w T F(x, y) F(x, y) =  i f(y i-1, y i, i, x) f(y i-1, y i, i, x):  1{y i-1 = INTRON, y i = EXON_FRAME_1}  1{y i-1 = EXON_FRAME_1, x human,i-2,…, x human,i+3 = ACCGGT)  1{y i-1 = EXON_FRAME_1, x human,i-1,…, x dog,i+1 = ACC, AGC)  (1-c)1{a<SVM_DONOR(i)<b}  (optional)1{EXON_FRAME_1, EST_EVIDENCE} CONTRAST - Features

CS262 Lecture 9, Win07, Batzoglou Accuracy increases as we add informants Diminishing returns after ~5 informants CONTRAST – SVM accuracies SNSP

CS262 Lecture 9, Win07, Batzoglou CONTRAST - Decoding Viterbi Decoding: maximize P(y | x) Maximum Expected Boundary Accuracy Decoding: maximize  i,B 1{y i-1, y i is exon boundary B} Accuracy(y i-1, y i, B | x) Accuracy(y i-1, y i, B | x) = P(y i-1, y i is B | x) – (1 – P(y i-1, y i is B | x))

CS262 Lecture 9, Win07, Batzoglou CONTRAST - Training Maximum Conditional Likelihood Training: maximize L(w) = P w (y | x) Maximum Expected Boundary Accuracy Training: Expected BoundaryAccuracy (w) =  i Accuracy i Accuracy i =  B 1{(y i-1, y i is exon boundary B} P w (y i-1, y i is B | x) -  B’ ≠ B P(y i-1, y i is exon boundary B’ | x)

CS262 Lecture 9, Win07, Batzoglou Performance Comparison De Novo EST-assisted Human Macaque Mouse Rat Rabbit Dog Cow Armadillo Elephant Tenrec Opossum Chicken Human Macaque Mouse Rat Rabbit Dog Cow Armadillo Elephant Tenrec Opossum Chicken

CS262 Lecture 9, Win07, Batzoglou Performance Comparison